Societal Adaptation to AI Human-Labor Automation
- URL: http://arxiv.org/abs/2501.03092v1
- Date: Sat, 07 Dec 2024 15:08:11 GMT
- Title: Societal Adaptation to AI Human-Labor Automation
- Authors: Yuval Rymon,
- Abstract summary: This paper analyzes how society can adapt to AI-driven human-labor automation.
The threat model is centered on mass unemployment and its socioeconomic consequences.
The analysis explores both "capability-modifying interventions" (CMIs) that shape how AI develops, and "adaptation interventions" (ADIs) that help society adjust.
- Score: 0.0
- License:
- Abstract: AI is transforming human labor at an unprecedented pace - improving 10$\times$ per year in training effectiveness. This paper analyzes how society can adapt to AI-driven human-labor automation (HLA), using Bernardi et al.'s societal adaptation framework. Drawing on literature from general automation economics and recent AI developments, the paper develops a "threat model." The threat model is centered on mass unemployment and its socioeconomic consequences, and assumes a non-binary scenario between full AGI takeover and swift job creation. The analysis explores both "capability-modifying interventions" (CMIs) that shape how AI develops, and "adaptation interventions" (ADIs) that help society adjust. Key interventions analyzed include steering AI development toward human-complementing capabilities, implementing human-in-the-loop requirements, taxation of automation, comprehensive reorientation of education, and both material and social substitutes for work. While CMIs can slow the transition in the short-term, significant automation is inevitable. Long-term adaptation requires ADIs - from education reform to providing substitutes for both the income and psychological benefits of work. Success depends on upfront preparation through mechanisms like "if-then commitments", and crafting flexible and accurate regulation that avoids misspecification. This structured analysis of HLA interventions and their potential effects and challenges aims to guide holistic AI governance strategies for the AI economy.
Related papers
- Augmenting Minds or Automating Skills: The Differential Role of Human Capital in Generative AI's Impact on Creative Tasks [4.39919134458872]
Generative AI is rapidly reshaping creative work, raising critical questions about its beneficiaries and societal implications.
This study challenges prevailing assumptions by exploring how generative AI interacts with diverse forms of human capital in creative tasks.
While AI democratizes access to creative tools, it simultaneously amplifies cognitive inequalities.
arXiv Detail & Related papers (2024-12-05T08:27:14Z) - Adapting to the AI Disruption: Reshaping the IT Landscape and Educational Paradigms [0.0]
Artificial intelligence (AI) signals the beginning of a revolutionary period where technological advancement and social change interact.
This essay addresses the opportunities and problems brought about by the AI-driven economy as it examines the effects of AI disruption on the IT sector and information technology education.
arXiv Detail & Related papers (2024-09-01T09:39:25Z) - Exploiting the Margin: How Capitalism Fuels AI at the Expense of Minoritized Groups [0.0]
This paper explores the relationship between capitalism, racial injustice, and artificial intelligence (AI)
It argues that AI acts as a contemporary vehicle for age-old forms of exploitation.
The paper promotes an approach that integrates social justice and equity into the core of technological design and policy.
arXiv Detail & Related papers (2024-03-10T22:40:07Z) - Artificial intelligence and the transformation of higher education
institutions [0.0]
This article develops a causal loop diagram (CLD) to map the causal feedback mechanisms of AI transformation in a typical HEI.
Our model accounts for the forces that drive the AI transformation and the consequences of the AI transformation on value creation in a typical HEI.
The article identifies and analyzes several reinforcing and balancing feedback loops, showing how the HEI invests in AI to improve student learning, research, and administration.
arXiv Detail & Related papers (2024-02-13T00:36:10Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - The AI Economist: Optimal Economic Policy Design via Two-level Deep
Reinforcement Learning [126.37520136341094]
We show that machine-learning-based economic simulation is a powerful policy and mechanism design framework.
The AI Economist is a two-level, deep RL framework that trains both agents and a social planner who co-adapt.
In simple one-step economies, the AI Economist recovers the optimal tax policy of economic theory.
arXiv Detail & Related papers (2021-08-05T17:42:35Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - AI and Shared Prosperity [0.0]
Future advances in AI that automate away human labor may have stark implications for labor markets and inequality.
This paper proposes a framework to analyze the effects of specific types of AI systems on the labor market, based on how much labor demand they will create versus displace.
arXiv Detail & Related papers (2021-05-18T12:37:18Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making.
Recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
arXiv Detail & Related papers (2019-12-29T17:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.