Enhancing Quantum State Reconstruction with Structured Classical Shadows
- URL: http://arxiv.org/abs/2501.03144v2
- Date: Thu, 09 Jan 2025 16:35:13 GMT
- Title: Enhancing Quantum State Reconstruction with Structured Classical Shadows
- Authors: Zhen Qin, Joseph M. Lukens, Brian T. Kirby, Zhihui Zhu,
- Abstract summary: We introduce a projected classical shadow (PCS) method with guaranteed performance for QST based on Haar-random projective measurements.
PCS extends the standard CS method by incorporating a projection step onto the target subspace.
For matrix product operator states, we demonstrate that the PCS method can recover the ground-truth state with $O(n2)$ total state copies.
- Score: 22.432806329828782
- License:
- Abstract: Quantum state tomography (QST) remains the prevailing method for benchmarking and verifying quantum devices; however, its application to large quantum systems is rendered impractical due to the exponential growth in both the required number of total state copies and classical computational resources. Recently, the classical shadow (CS) method has been introduced as a more computationally efficient alternative, capable of accurately predicting key quantum state properties. Despite its advantages, a critical question remains as to whether the CS method can be extended to perform QST with guaranteed performance. In this paper, we address this challenge by introducing a projected classical shadow (PCS) method with guaranteed performance for QST based on Haar-random projective measurements. PCS extends the standard CS method by incorporating a projection step onto the target subspace. For a general quantum state consisting of $n$ qubits, our method requires a minimum of $O(4^n)$ total state copies to achieve a bounded recovery error in the Frobenius norm between the reconstructed and true density matrices, reducing to $O(2^n r)$ for states of rank $r<2^n$ -- meeting information-theoretic optimal bounds in both cases. For matrix product operator states, we demonstrate that the PCS method can recover the ground-truth state with $O(n^2)$ total state copies, improving upon the previously established Haar-random bound of $O(n^3)$. Simulation results further validate the effectiveness of the proposed PCS method.
Related papers
- Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.
We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.
We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Evaluating Ground State Energies of Chemical Systems with Low-Depth
Quantum Circuits and High Accuracy [6.81054341190257]
We develop an enhanced Variational Quantum Eigensolver (VQE) ansatz based on the Qubit Coupled Cluster (QCC) approach.
We evaluate our enhanced QCC ansatz on two distinct quantum hardware, IBM Kolkata and Quantinuum H1-1.
arXiv Detail & Related papers (2024-02-21T17:45:03Z) - $\mathcal{PT}$-symmetric mapping of three states and its implementation on a cloud quantum processor [0.9599644507730107]
We develop a new $mathcalPT$-symmetric approach for mapping three pure qubit states.
We show consistency with the Hermitian case, conservation of average projections on reference vectors, and Quantum Fisher Information.
Our work unlocks new doors for applying $mathcalPT$-symmetry in quantum communication, computing, and cryptography.
arXiv Detail & Related papers (2023-12-27T18:51:33Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - A Faster Quantum Algorithm for Semidefinite Programming via Robust IPM
Framework [14.531920189937495]
This paper studies a fundamental problem in convex optimization, which is to solve semidefinite programming (SDP) with high accuracy.
We give a quantum second-order algorithm with high-accuracy in both the optimality and the feasibility of its output.
arXiv Detail & Related papers (2022-07-22T15:51:02Z) - K-sparse Pure State Tomography with Phase Estimation [1.2183405753834557]
Quantum state tomography (QST) for reconstructing pure states requires exponentially increasing resources and measurements with the number of qubits.
QST reconstruction for any pure state composed of the superposition of $K$ different computational basis states of $n$bits in a specific measurement set-up is presented.
arXiv Detail & Related papers (2021-11-08T09:43:12Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Efficient Verification of Anticoncentrated Quantum States [0.38073142980733]
I present a novel method for estimating the fidelity $F(mu,tau)$ between a preparable quantum state $mu$ and a classically specified target state $tau$.
I also present a more sophisticated version of the method, which uses any efficiently preparable and well-characterized quantum state as an importance sampler.
arXiv Detail & Related papers (2020-12-15T18:01:11Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.