Deep-Relative-Trust-Based Diffusion for Decentralized Deep Learning
- URL: http://arxiv.org/abs/2501.03162v3
- Date: Thu, 23 Jan 2025 12:41:42 GMT
- Title: Deep-Relative-Trust-Based Diffusion for Decentralized Deep Learning
- Authors: Muyun Li, Aaron Fainman, Stefan Vlaski,
- Abstract summary: Decentralized learning strategies allow a collection of agents to learn efficiently from local data sets without the need for central aggregation or orchestration.
We propose a new decentralized learning algorithm, termed DRT diffusion, based on deep relative trust (DRT), a recently introduced similarity measure for neural networks.
- Score: 12.883347524020724
- License:
- Abstract: Decentralized learning strategies allow a collection of agents to learn efficiently from local data sets without the need for central aggregation or orchestration. Current decentralized learning paradigms typically rely on an averaging mechanism to encourage agreement in the parameter space. We argue that in the context of deep neural networks, which are often over-parameterized, encouraging consensus of the neural network outputs, as opposed to their parameters can be more appropriate. This motivates the development of a new decentralized learning algorithm, termed DRT diffusion, based on deep relative trust (DRT), a recently introduced similarity measure for neural networks. We provide convergence analysis for the proposed strategy, and numerically establish its benefit to generalization, especially with sparse topologies, in an image classification task.
Related papers
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
arXiv Detail & Related papers (2024-10-09T06:17:16Z) - Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
We provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popularDGD algorithms.
We validate our analytical results by accurately predicting error and error and for classification tasks.
arXiv Detail & Related papers (2024-09-23T17:57:58Z) - Initialisation and Network Effects in Decentralised Federated Learning [1.5961625979922607]
Decentralised federated learning enables collaborative training of individual machine learning models on a distributed network of communicating devices.
This approach avoids central coordination, enhances data privacy and eliminates the risk of a single point of failure.
We propose a strategy for uncoordinated initialisation of the artificial neural networks based on the distribution of eigenvector centralities of the underlying communication network.
arXiv Detail & Related papers (2024-03-23T14:24:36Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Network Gradient Descent Algorithm for Decentralized Federated Learning [0.2867517731896504]
We study a fully decentralized federated learning algorithm, which is a novel descent gradient algorithm executed on a communication-based network.
In the NGD method, only statistics (e.g., parameter estimates) need to be communicated, minimizing the risk of privacy.
We find that both the learning rate and the network structure play significant roles in determining the NGD estimator's statistical efficiency.
arXiv Detail & Related papers (2022-05-06T02:53:31Z) - FedDKD: Federated Learning with Decentralized Knowledge Distillation [3.9084449541022055]
We propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD)
We show that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps.
arXiv Detail & Related papers (2022-05-02T07:54:07Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Decentralized Deep Learning using Momentum-Accelerated Consensus [15.333413663982874]
We consider the problem of decentralized deep learning where multiple agents collaborate to learn from a distributed dataset.
We propose and analyze a novel decentralized deep learning algorithm where the agents interact over a fixed communication topology.
Our algorithm is based on the heavy-ball acceleration method used in gradient-based protocol.
arXiv Detail & Related papers (2020-10-21T17:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.