BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning
- URL: http://arxiv.org/abs/2501.03226v1
- Date: Mon, 06 Jan 2025 18:59:13 GMT
- Title: BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning
- Authors: Beichen Zhang, Yuhong Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Haodong Duan, Yuhang Cao, Dahua Lin, Jiaqi Wang,
- Abstract summary: We focus on improving the reasoning quality within each step of the divide-and-conquer pipeline.<n> BoostStep provides more relevant examples than the coarse question-grained strategy.<n>It improves GPT-4o and Qwen2.5-Math-72B by 3.6% and 2.0% respectively on various mathematical benchmarks.
- Score: 83.03531832811386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cutting-edge large language models (LLMs) demonstrate promising performance in solving complex math problems with a divide-and-conquer pipeline and the assistance of in-context learning (ICL) examples. However, their potential for improvement is limited by two critical problems within their ICL examples: granularity-mismatch and the ensuing negative-effect noise problem. Specifically, the LLMs are capable of the dividing process yet mostly failed by inaccurate reasoning within a few conquer steps, while the ICL examples retrieved in question-grained sometimes lack relevant steps for a specific challenging reasoning step. Further, this disconnect may hinder the correct reasoning due to its irrelevance. To this end, we focus on improving the reasoning quality within each step and present BoostStep. BoostStep aligns the granularity between the retrieving and reasoning on step grained, and provides highly related ICL examples for each reasoning step with a novel `first-try' strategy. BoostStep provides more relevant examples than the coarse question-grained strategy, enhancing the model reasoning quality within each step steadily. BoostStep is a general and robust reasoning-enhancing method that not only improves standalone reasoning performance but also integrates seamlessly with Monte Carlo Tree Search methods (MCTS) to refine both candidate generation and decision-making. Quantitatively, it improves GPT-4o and Qwen2.5-Math-72B by 3.6\% and 2.0\% respectively on various mathematical benchmarks, and 7.5\% gain combined with MCTS.
Related papers
- Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models [56.37421741507468]
Chain-of-Thought (CoT) reasoning has significantly enhanced the performance of large language models (LLMs)
We propose a method to identify critical reasoning steps using perplexity as a measure of their importance.
arXiv Detail & Related papers (2025-02-18T20:04:51Z) - Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback [94.25162866972077]
Step-KTO is a training framework that combines process-level and outcome-level binary feedback.
Our experiments show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps.
arXiv Detail & Related papers (2025-01-18T15:38:03Z) - Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation [68.58373854950294]
We focus on causal reasoning and address the task of establishing causal relationships based on correlation information.<n>We introduce a prompting strategy for this problem that breaks the original task into fixed subquestions.<n>We evaluate our approach on an existing causal benchmark, Corr2Cause.
arXiv Detail & Related papers (2024-12-18T15:32:27Z) - EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning [5.172620636569522]
Large language models (LLMs) have enabled in-context learning (ICL), allowing LLMs to acquire proficiency in a specific task using only a few demonstration samples (exemplars)
A critical challenge in ICL is the selection of optimal exemplars, which can be either task-specific (static) or test-example-specific (dynamic)
arXiv Detail & Related papers (2024-11-06T12:48:04Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search [22.672130194493793]
Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains.
They still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics.
We propose a novel approach, BEATS, to enhance mathematical problem-solving abilities.
arXiv Detail & Related papers (2024-09-26T15:47:42Z) - Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation [16.350747493026432]
The Chain-of-Thought (CoT) paradigm has emerged as a critical approach for enhancing the reasoning capabilities of large language models (LLMs)
We propose the textbfStrategic Chain-of-Thought (SCoT) to refine LLM performance by integrating strategic knowledge prior to generating intermediate reasoning steps.
SCoT employs a two-stage approach within a single prompt: first eliciting an effective problem-solving strategy, which is then used to guide the generation of high-quality CoT paths and final answers.
arXiv Detail & Related papers (2024-09-05T06:28:05Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
We introduce a new benchmark, SearchBench, containing 11 unique search problem types.
We show that even the most advanced LLMs fail to solve these problems end-to-end in text.
Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%.
arXiv Detail & Related papers (2024-06-18T00:44:58Z) - Beyond Imitation: Learning Key Reasoning Steps from Dual Chain-of-Thoughts in Reasoning Distillation [24.272384832200522]
We propose mistaktextbfE-textbfDriven key reasontextbfIng step distillatextbfTion (textbfEDIT)
We design prompts to generate dual CoTs data with similar reasoning paths but divergent conclusions.
Experiments validate the effectiveness of EDIT across both in-domain and out-of-domain benchmark reasoning datasets.
arXiv Detail & Related papers (2024-05-30T06:32:11Z) - Chain of Thoughtlessness? An Analysis of CoT in Planning [17.329365493094542]
Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution.
This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain.
We find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class.
arXiv Detail & Related papers (2024-05-08T02:48:28Z) - AlphaMath Almost Zero: Process Supervision without Process [6.318873143509028]
We propose an innovative framework, AlphaMath, that bypasses the need for process annotations by leveraging Monte Carlo Tree Search (MCTS)
This framework focuses on unleashing the potential of a well-pretrained LLM to autonomously enhance its mathematical reasoning.
The experimental results on both in-domain and out-of-domain datasets demonstrate that even without GPT-4 or human-annotated process supervision, our AlphaMath framework achieves comparable or superior results to previous state-of-the-art methods.
arXiv Detail & Related papers (2024-05-06T15:20:30Z) - Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models [73.4425450752596]
Chain-of-thought (CoT) prompting has impressively unlocked the reasoning potential of large language models (LLMs)
Yet, the standard CoT is less effective in problems demanding multiple reasoning steps.
We propose RESPROMPT, a new prompting strategy that advances multi-step reasoning in LLMs.
arXiv Detail & Related papers (2023-10-07T08:56:28Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
Chain-of-thought prompting(CoT) and tool augmentation have been validated as effective practices for improving large language models.
We propose a new approach that can deliberate the reasoning steps with tool interfaces, namely textbfDELI.
Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines.
arXiv Detail & Related papers (2023-06-04T17:02:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.