DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Generative Learning on 3D Meshes
- URL: http://arxiv.org/abs/2501.03397v3
- Date: Sun, 12 Jan 2025 23:38:16 GMT
- Title: DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Generative Learning on 3D Meshes
- Authors: Xuyang Wang, Ziang Cheng, Zhenyu Li, Jiayu Yang, Haorui Ji, Pan Ji, Mehrtash Harandi, Richard Hartley, Hongdong Li,
- Abstract summary: DoubleDiffusion is a framework that combines heat dissipation diffusion and denoising diffusion for direct generative learning on 3D mesh surfaces.
Our work contributes a new direction in diffusion-based generative modeling on 3D surfaces, with potential applications in the field of 3D asset generation.
- Score: 67.39455433337316
- License:
- Abstract: This paper proposes DoubleDiffusion, a novel framework that combines heat dissipation diffusion and denoising diffusion for direct generative learning on 3D mesh surfaces. Our approach addresses the challenges of generating continuous signal distributions residing on a curve manifold surface. Unlike previous methods that rely on unrolling 3D meshes into 2D or adopting field representations, DoubleDiffusion leverages the Laplacian-Beltrami operator to process features respecting the mesh structure. This combination enables effective geometry-aware signal diffusion across the underlying geometry. As shown in Fig.1, we demonstrate that DoubleDiffusion has the ability to generate RGB signal distributions on complex 3D mesh surfaces and achieves per-category shape-conditioned texture generation across different shape geometry. Our work contributes a new direction in diffusion-based generative modeling on 3D surfaces, with potential applications in the field of 3D asset generation.
Related papers
- GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation [75.39457097832113]
This paper introduces a novel 3D generation framework, offering scalable, high-quality 3D generation with an interactive Point Cloud-structured Latent space.
Our framework employs a Variational Autoencoder with multi-view posed RGB-D(epth)-N(ormal) renderings as input, using a unique latent space design that preserves 3D shape information.
The proposed method, GaussianAnything, supports multi-modal conditional 3D generation, allowing for point cloud, caption, and single/multi-view image inputs.
arXiv Detail & Related papers (2024-11-12T18:59:32Z) - L3DG: Latent 3D Gaussian Diffusion [74.36431175937285]
L3DG is the first approach for generative 3D modeling of 3D Gaussians through a latent 3D Gaussian diffusion formulation.
We employ a sparse convolutional architecture to efficiently operate on room-scale scenes.
By leveraging the 3D Gaussian representation, the generated scenes can be rendered from arbitrary viewpoints in real-time.
arXiv Detail & Related papers (2024-10-17T13:19:32Z) - Deformable 3D Shape Diffusion Model [21.42513407755273]
We introduce a novel deformable 3D shape diffusion model that facilitates comprehensive 3D shape manipulation.
We demonstrate state-of-the-art performance in point cloud generation and competitive results in mesh deformation.
Our method presents a unique pathway for advancing 3D shape manipulation and unlocking new opportunities in the realm of virtual reality.
arXiv Detail & Related papers (2024-07-31T08:24:42Z) - Neural Point Cloud Diffusion for Disentangled 3D Shape and Appearance Generation [29.818827785812086]
Controllable generation of 3D assets is important for many practical applications like content creation in movies, games and engineering, as well as in AR/VR.
We present a suitable representation for 3D diffusion models to enable disentanglement by introducing a hybrid point cloud and neural radiance field approach.
arXiv Detail & Related papers (2023-12-21T18:46:27Z) - PolyDiff: Generating 3D Polygonal Meshes with Diffusion Models [15.846449180313778]
PolyDiff is the first diffusion-based approach capable of directly generating realistic and diverse 3D polygonal meshes.
Our model is capable of producing high-quality 3D polygonal meshes, ready for integration into downstream 3D.
arXiv Detail & Related papers (2023-12-18T18:19:26Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Generative Novel View Synthesis with 3D-Aware Diffusion Models [96.78397108732233]
We present a diffusion-based model for 3D-aware generative novel view synthesis from as few as a single input image.
Our method makes use of existing 2D diffusion backbones but, crucially, incorporates geometry priors in the form of a 3D feature volume.
In addition to generating novel views, our method has the ability to autoregressively synthesize 3D-consistent sequences.
arXiv Detail & Related papers (2023-04-05T17:15:47Z) - Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and
Manipulation [54.09274684734721]
We present a new approach for 3D shape generation, inversion, and manipulation, through a direct generative modeling on a continuous implicit representation in wavelet domain.
Specifically, we propose a compact wavelet representation with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets.
We may jointly train an encoder network to learn a latent space for inverting shapes, allowing us to enable a rich variety of whole-shape and region-aware shape manipulations.
arXiv Detail & Related papers (2023-02-01T02:47:53Z) - Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D
Generation [28.25023686484727]
A diffusion model learns to predict a vector field of gradients.
We propose a chain rule on the learned gradients, and back-propagate the score of a diffusion model through the Jacobian of a differentiable field.
We run our algorithm on several off-the-shelf diffusion image generative models, including the recently released Stable Diffusion trained on the large-scale LAION dataset.
arXiv Detail & Related papers (2022-12-01T18:56:37Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.