Inductive Construction of Variational Quantum Circuit for Constrained Combinatorial Optimization
- URL: http://arxiv.org/abs/2501.03521v1
- Date: Tue, 07 Jan 2025 04:35:27 GMT
- Title: Inductive Construction of Variational Quantum Circuit for Constrained Combinatorial Optimization
- Authors: Hyakka Nakada, Kotaro Tanahashi, Shu Tanaka,
- Abstract summary: We propose a new method for constrained optimization using variational quantum circuits.
The proposed method was applied to facility location problem and was found to increase the probability for measuring feasible solutions or optimal solutions.
- Score: 1.8775413720750924
- License:
- Abstract: In this study, we propose a new method for constrained combinatorial optimization using variational quantum circuits. Quantum computers are considered to have the potential to solve large combinatorial optimization problems faster than classical computers. Variational quantum algorithms, such as Variational Quantum Eigensolver (VQE), have been studied extensively because they are expected to work on noisy intermediate scale devices. Unfortunately, many optimization problems have constraints, which induces infeasible solutions during VQE process. Recently, several methods for efficiently solving constrained combinatorial optimization problems have been proposed by designing a quantum circuit so as to output only the states that satisfy the constraints. However, the types of available constraints are still limited. Therefore, we have started to develop variational quantum circuits that can handle a wider range of constraints. The proposed method utilizes a forwarding operation that maps from feasible states for subproblems to those for larger subproblems. As long as appropriate forwarding operations can be defined, iteration of this process can inductively construct variational circuits outputting feasible states even in the case of multiple and complex constraints. In this paper, the proposed method was applied to facility location problem and was found to increase the probability for measuring feasible solutions or optimal solutions. In addition, the cost of the obtained circuit was comparable to that of conventional variational circuits.
Related papers
- Feedback-Based Quantum Strategies for Constrained Combinatorial Optimization Problems [0.6554326244334868]
We extend the feedback-based quantum algorithms framework to address a broader class of constraints known as invalid configuration (IC) constraints.
We propose an alternative method tailored for feedback-based quantum algorithms that directly tackles IC constraints without requiring slack variables.
These methods eliminate the need for slack variables, significantly reducing the quantum circuit depth and the number of qubits required.
arXiv Detail & Related papers (2025-02-20T08:57:28Z) - Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
We propose a method for constructing quantum circuits which greatly reduces inter-device communication costs.
We show that we can construct tractable circuits nearly three times the size of previous QDCA methods while retaining a similar or greater level of quality.
arXiv Detail & Related papers (2024-05-01T20:49:50Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.