論文の概要: SenseRAG: Constructing Environmental Knowledge Bases with Proactive Querying for LLM-Based Autonomous Driving
- arxiv url: http://arxiv.org/abs/2501.03535v1
- Date: Tue, 07 Jan 2025 05:15:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:47:00.754558
- Title: SenseRAG: Constructing Environmental Knowledge Bases with Proactive Querying for LLM-Based Autonomous Driving
- Title(参考訳): SenseRAG:LLMに基づく自律運転のためのプロアクティブクエリによる環境知識ベースの構築
- Authors: Xuewen Luo, Fan Ding, Fengze Yang, Yang Zhou, Junnyong Loo, Hwa Hui Tew, Chenxi Liu,
- Abstract要約: 本研究では,大規模言語モデル(LLM)の文脈推論機能を活用することにより,自律運転(AD)における状況認識の高度化の必要性に対処する。
厳密なラベルベースのアノテーションに依存する従来の認識システムとは異なり、リアルタイムのマルチモーダルセンサーデータを統一されたLLM対応の知識ベースに統合する。
実世界のV2Xデータセットを用いた実験結果は、知覚と予測性能の大幅な改善を示す。
- 参考スコア(独自算出の注目度): 10.041702058108482
- License:
- Abstract: This study addresses the critical need for enhanced situational awareness in autonomous driving (AD) by leveraging the contextual reasoning capabilities of large language models (LLMs). Unlike traditional perception systems that rely on rigid, label-based annotations, it integrates real-time, multimodal sensor data into a unified, LLMs-readable knowledge base, enabling LLMs to dynamically understand and respond to complex driving environments. To overcome the inherent latency and modality limitations of LLMs, a proactive Retrieval-Augmented Generation (RAG) is designed for AD, combined with a chain-of-thought prompting mechanism, ensuring rapid and context-rich understanding. Experimental results using real-world Vehicle-to-everything (V2X) datasets demonstrate significant improvements in perception and prediction performance, highlighting the potential of this framework to enhance safety, adaptability, and decision-making in next-generation AD systems.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)の文脈推論機能を活用することにより,自律運転(AD)における状況認識の高度化の必要性に対処する。
厳密なラベルベースのアノテーションに依存する従来の認識システムとは異なり、リアルタイムのマルチモーダルセンサーデータを統合されたLLM読み取り可能な知識ベースに統合することで、LLMは複雑な運転環境を動的に理解し、応答することができる。
LLMの本質的にのレイテンシとモダリティの制限を克服するため、AD用にプロアクティブなRetrieval-Augmented Generation (RAG)を設計し、チェーン・オブ・シンセサイザー機構と組み合わせて、迅速でコンテキストに富んだ理解を確保する。
実世界のV2Xデータセットを用いた実験結果は、次世代ADシステムの安全性、適応性、意思決定性を高めるためのこのフレームワークの可能性を強調し、認識と予測性能を大幅に改善したことを示している。
関連論文リスト
- Hints of Prompt: Enhancing Visual Representation for Multimodal LLMs in Autonomous Driving [65.04643267731122]
一般的なMLLMとCLIPの組み合わせは、駆動固有のシナリオを正確に表現するのに苦労することが多い。
Hints of Prompt (HoP) フレームワークを提案する。
これらのヒントはHint Fusionモジュールを通じて融合され、視覚的表現が強化され、マルチモーダル推論が強化される。
論文 参考訳(メタデータ) (2024-11-20T06:58:33Z) - OWLed: Outlier-weighed Layerwise Pruning for Efficient Autonomous Driving Framework [3.8320050452121692]
本稿では,効率的な自律運転フレームワーク Outlier-Weighed Layerwise Pruning であるOWLedを紹介する。
提案手法は,外乱特性の分布に基づいて,異なる層に対して一様でない空間比を割り当てる。
圧縮モデルが自律運転タスクに適合するようにするため、運転環境データをキャリブレーションとプルーニングの両方に組み込む。
論文 参考訳(メタデータ) (2024-11-12T10:55:30Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Driveは600万以上のビデオテキストペアを備えたベンチマークデータセットである。
我々は、自律運転プロセスが知覚、予測、推論ステップの逐次的な組み合わせであると特徴付けている。
本稿では,自律システムにおける連鎖型推論性能を評価するための新しい集計評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-06T18:32:33Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。