Context-Alignment: Activating and Enhancing LLM Capabilities in Time Series
- URL: http://arxiv.org/abs/2501.03747v1
- Date: Tue, 07 Jan 2025 12:40:35 GMT
- Title: Context-Alignment: Activating and Enhancing LLM Capabilities in Time Series
- Authors: Yuxiao Hu, Qian Li, Dongxiao Zhang, Jinyue Yan, Yuntian Chen,
- Abstract summary: We propose Context-Alignment to align time series (TS) data with a linguistic component in language environments familiar to Large Language Models (LLMs)
Such context-level alignment comprises structural alignment and logical alignment, which is achieved by a Dual-Scale Context-Alignment GNNs (DSCA-GNNs)
Extensive experiments show the effectiveness of DECA and the importance of Context-Alignment across tasks, particularly in few-shot and zero-shot forecasting.
- Score: 3.453940014682793
- License:
- Abstract: Recently, leveraging pre-trained Large Language Models (LLMs) for time series (TS) tasks has gained increasing attention, which involves activating and enhancing LLMs' capabilities. Many methods aim to activate LLMs' capabilities based on token-level alignment but overlook LLMs' inherent strength on natural language processing -- their deep understanding of linguistic logic and structure rather than superficial embedding processing. We propose Context-Alignment, a new paradigm that aligns TS with a linguistic component in the language environments familiar to LLMs to enable LLMs to contextualize and comprehend TS data, thereby activating their capabilities. Specifically, such context-level alignment comprises structural alignment and logical alignment, which is achieved by a Dual-Scale Context-Alignment GNNs (DSCA-GNNs) applied to TS-language multimodal inputs. Structural alignment utilizes dual-scale nodes to describe hierarchical structure in TS-language, enabling LLMs treat long TS data as a whole linguistic component while preserving intrinsic token features. Logical alignment uses directed edges to guide logical relationships, ensuring coherence in the contextual semantics. Demonstration examples prompt are employed to construct Demonstration Examples based Context-Alignment (DECA) following DSCA-GNNs framework. DECA can be flexibly and repeatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and structure, thereby enhancing performance. Extensive experiments show the effectiveness of DECA and the importance of Context-Alignment across tasks, particularly in few-shot and zero-shot forecasting, confirming that Context-Alignment provide powerful prior knowledge on context.
Related papers
- Enhancing LLM Character-Level Manipulation via Divide and Conquer [108.6908427615402]
Large Language Models (LLMs) have demonstrated strong generalization capabilities across a wide range of natural language processing (NLP) tasks.
They exhibit notable weaknesses in character-level string manipulation, struggling with fundamental operations such as character deletion, insertion, and substitution.
We propose Character-Level Manipulation via Divide and Conquer, a novel approach designed to bridge the gap between token-level processing and character-level manipulation.
arXiv Detail & Related papers (2025-02-12T07:37:39Z) - LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation [60.02145113467427]
This work introduces a fine-tuning approach that integrates large language models with the pretrained CLIP visual encoder.
To address the challenge of LLMs' autoregressive nature, we propose a caption-to-caption contrastive learning framework.
Our method achieves substantial performance gains on various downstream tasks.
arXiv Detail & Related papers (2024-11-07T18:59:16Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - Large Language Models are Interpretable Learners [53.56735770834617]
In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge the gap between expressiveness and interpretability.
The pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts.
As the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable) and other LLMs.
arXiv Detail & Related papers (2024-06-25T02:18:15Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
We introduce an end-to-end modality-aligning framework for LLM-graph alignment: Dual-Residual Vector Quantized-Variational AutoEncoder, namely Dr.E.
Our approach is purposefully designed to facilitate token-level alignment with LLMs, enabling an effective translation of the intrinsic'of graphs into comprehensible natural language.
Our framework ensures certain visual interpretability, efficiency, and robustness, marking the promising successful endeavor to achieve token-level alignment between LLMs and GNNs.
arXiv Detail & Related papers (2024-06-19T16:43:56Z) - Integrating Large Language Models with Graphical Session-Based
Recommendation [8.086277931395212]
We introduce large language models with graphical Session-Based recommendation, named LLMGR.
This framework bridges the gap by harmoniously integrating LLMs with Graph Neural Networks (GNNs) for SBR tasks.
This integration seeks to leverage the complementary strengths of LLMs in natural language understanding and GNNs in relational data processing.
arXiv Detail & Related papers (2024-02-26T12:55:51Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
This paper introduces Structure Guided Prompt, a framework designed to improve the multi-step reasoning capabilities of Large Language Models (LLMs)
Our experiments show that this framework significantly enhances the reasoning capabilities of LLMs, enabling them to excel in a broader spectrum of natural language scenarios.
arXiv Detail & Related papers (2024-02-20T22:56:23Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning [50.40636157214161]
Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language.
LLMs have achieved impressive performance in computer programs based on a natural language prompt.
This paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks.
arXiv Detail & Related papers (2023-12-17T17:26:50Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.