Signatures of a gravitational quantum vacuum on dynamics of massive particles
- URL: http://arxiv.org/abs/2501.03886v1
- Date: Tue, 07 Jan 2025 15:50:45 GMT
- Title: Signatures of a gravitational quantum vacuum on dynamics of massive particles
- Authors: Aaron R. Malcolm, Zhi-Wei Wang, B. Sharmila, Animesh Datta,
- Abstract summary: We study the interaction of two massive particles with a quantised gravitational field in its vacuum state.
For free particles, (i) leads to purely unitary dynamics but (ii) leads to dissipation.
For two particles coupled through a linear spring, (i) and (ii) lead to different cut-off dependences in the frequency shift harmonic ladder of the differential motional mode.
- Score: 3.5507288996708097
- License:
- Abstract: We study the interaction of two massive particles with a quantised gravitational field in its vacuum state using two different position observables: (i) a frame-dependent coordinate separation and (ii) a frame-independent geodesic separation. For free particles, (i) leads to purely unitary dynamics but (ii) leads to dissipation. For two particles coupled through a linear spring, (i) and (ii) lead to different cut-off dependences in the frequency shift harmonic ladder of the differential motional mode. Our findings highlight the subtle consequences of different position observables at the interface of quantum mechanics and gravity.
Related papers
- Decoherence of spin superposition state caused by a quantum electromagnetic field [0.0]
In this study, we investigate the decoherence of a spatially superposed electrically neutral spin-$frac12$ particle in the presence of a quantum electromagnetic field in Minkowski spacetime.
We demonstrate that decoherence due to the spin-magnetic field coupling can be categorized into two distinct factors: local decoherence, originating from the two-point correlation functions along each branch of the superposed trajectories, and nonlocal decoherence, which arises from the correlation functions between the two superposed trajectories.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Spatial correlations of field observables in two half-spaces separated
by a movable perfect mirror [0.0]
We consider a system of two cavities separated by a reflecting boundary of finite mass that is free to move, and bounded to its equilibrium position by a harmonic potential.
This yields an effective mirror-field interaction, as well as an effective interaction between the field modes mediated by the movable boundary.
We consider the second-order interacting ground state of the system, that contains virtual excitations of both mirror's degrees of freedom and of the scalar fields.
arXiv Detail & Related papers (2022-04-14T11:18:52Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Anderson localization of composite particles [0.0]
We show that entanglement between the two degrees of freedom weakens localization due to the upper bound imposed on the inverse participation ratio by purity of a quantum state.
We illustrate that the coupling has a dramatic effect on localization properties, even with a small number of internal states participating in quantum dynamics.
arXiv Detail & Related papers (2020-11-12T09:35:45Z) - Emergence of Intra-Particle Entanglement and Time-Varying Violation of
Bell's Inequality in Dirac Matter [0.0]
We show the emergence and dynamics of intra-particle entanglement in Dirac fermions.
The entanglement is a complex dynamic quantity but is generally large, independent of the initial state.
These features are also expected to impact entanglement between pairs of particles, and may be detectable in experiments that combine Cooper pair splitting with nonlocal measurements of spin-spin correlation in mesoscopic devices based on Dirac materials.
arXiv Detail & Related papers (2020-07-03T09:55:09Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.