論文の概要: Superpixel Boundary Correction for Weakly-Supervised Semantic Segmentation on Histopathology Images
- arxiv url: http://arxiv.org/abs/2501.03891v1
- Date: Tue, 07 Jan 2025 15:54:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:49:22.537772
- Title: Superpixel Boundary Correction for Weakly-Supervised Semantic Segmentation on Histopathology Images
- Title(参考訳): 超ピクセル境界補正による病理組織像の弱視的セマンティックセマンティックセグメンテーション
- Authors: Hongyi Wu, Hong Zhang,
- Abstract要約: 弱教師付きセマンティックセグメンテーション (WSSS) は、ピクセルレベルのものの代わりに画像レベルのラベルを使用することで、アノテーションの要求を減らす。
クラスアクティベーションマップ(CAM)ベースの手法は依然として空間分解能が低く、境界が不明瞭である。
本稿では,スーパーピクセルクラスタリングとフラッドフィルを用いてCAM境界を改良するマルチレベルスーパーピクセル補正アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.002538365135642
- License:
- Abstract: With the rapid advancement of deep learning, computational pathology has made significant progress in cancer diagnosis and subtyping. Tissue segmentation is a core challenge, essential for prognosis and treatment decisions. Weakly supervised semantic segmentation (WSSS) reduces the annotation requirement by using image-level labels instead of pixel-level ones. However, Class Activation Map (CAM)-based methods still suffer from low spatial resolution and unclear boundaries. To address these issues, we propose a multi-level superpixel correction algorithm that refines CAM boundaries using superpixel clustering and floodfill. Experimental results show that our method achieves great performance on breast cancer segmentation dataset with mIoU of 71.08%, significantly improving tumor microenvironment boundary delineation.
- Abstract(参考訳): ディープラーニングの急速な進歩により、計算病理学はがんの診断とサブタイプにおいて大きな進歩を遂げた。
組織セグメンテーションは、予後と治療決定に不可欠な中核的な課題である。
弱教師付きセマンティックセグメンテーション (WSSS) は、ピクセルレベルのものの代わりに画像レベルのラベルを使用することで、アノテーションの要求を減らす。
しかし, クラス活性化マップ(CAM)に基づく手法では, 空間分解能が低く, 境界が不明瞭である。
これらの問題に対処するために,スーパーピクセルクラスタリングとフラッドフィルを用いてCAM境界を洗練するマルチレベルスーパーピクセル補正アルゴリズムを提案する。
実験の結果,mIoU 71.08%の乳がんセグメンテーションデータセットにおいて,腫瘍の微小環境境界デライン化を著しく改善した。
関連論文リスト
- Robust Tumor Segmentation with Hyperspectral Imaging and Graph Neural
Networks [31.87960207119459]
より堅牢でスムーズなセグメンテーションのために,タイルの空間的文脈を利用した改良手法を提案する。
タイルの不規則な形状に対処するため,グラフニューラルネットワーク(GNN)を用いて周辺地域のコンテキスト情報を伝播する。
以上の結果から, 文脈認識型GNNアルゴリズムは, HSI画像上の腫瘍の区切りを頑健に検出できることが示唆された。
論文 参考訳(メタデータ) (2023-11-20T14:07:38Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Deep Superpixel Generation and Clustering for Weakly Supervised
Segmentation of Brain Tumors in MR Images [0.0]
本研究は、弱教師付き脳腫瘍セグメント化を実現するために、スーパーピクセル生成モデルとスーパーピクセルクラスタリングモデルを使用することを提案する。
われわれは、Multimodal Brain tumor Challenge 2020データセットからの2Dの磁気共鳴脳スキャンと、パイプラインを訓練するための腫瘍の存在を示すラベルを用いた。
提案手法は平均Dice係数0.691と平均95%Hausdorff距離18.1を達成し,既存のスーパーピクセルベースの弱教師付きセグメンテーション法より優れていた。
論文 参考訳(メタデータ) (2022-09-20T18:08:34Z) - Hybrid guiding: A multi-resolution refinement approach for semantic
segmentation of gigapixel histopathological images [0.7490318169877296]
セマンティックセグメンテーションのための、H2G-Netと呼ばれるカスケード畳み込みニューラルネットワーク設計を提案する。
設計にはパッチワイズ方式による検出段階と、畳み込みオートエンコーダを用いた改良段階が含まれる。
最高の設計は90 WSIの独立したテストセットでDiceスコア0.933を達成した。
論文 参考訳(メタデータ) (2021-12-07T02:31:29Z) - Pseudo-label refinement using superpixels for semi-supervised brain
tumour segmentation [0.6767885381740952]
限定アノテーションを用いたニューラルネットワークのトレーニングは、医療領域において重要な問題である。
半教師付き学習は、注釈付きデータが少ないセグメンテーションを学習することでこの問題を克服することを目的としている。
擬似ラベルの精度を向上させるために,スーパーピクセルに基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-16T15:17:11Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
画像中の新型コロナウイルス感染領域セグメンテーションの長距離依存性のモデリングを強化するために,PSGRモジュールを提案する。
PSGRモジュールは不正確なピクセルからノードへの投影を回避し、グローバルな推論のために各ピクセル固有の情報を保存する。
このソリューションは、3つの公開データセット上の4つの広く使われているセグメンテーションモデルに対して評価されている。
論文 参考訳(メタデータ) (2021-08-09T04:58:23Z) - Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis [17.936019428281586]
がん診断において、入力画像の出力に責任のある領域を局在させることにより、解釈可能性を実現することができる。
本稿では,高解像度画像の弱教師付きセグメンテーションを実現するニューラルネットワークアーキテクチャを提案する。
乳がん検診にマンモグラフィーを用いて適用し, 大規模臨床応用データセットで検証した。
論文 参考訳(メタデータ) (2021-06-13T17:25:21Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
我々は,大域的誘導ブロック(GGB)と乳房病変境界検出モジュールを備えた深部畳み込みニューラルネットワークを開発した。
当社のネットワークは、乳房超音波病変分割における他の医療画像分割方法および最近のセマンティックセグメンテーション方法よりも優れています。
論文 参考訳(メタデータ) (2021-04-05T13:15:22Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
独立意味情報を持つ各代表領域を部分空間とみなし,部分空間クラスタリング問題としてスーパーピクセルセグメンテーションを定式化する。
従来のサブスペースクラスタリングとスーパーピクセルセグメンテーションの簡単な統合は,画素の空間相関のために効果的に機能しないことを示す。
本稿では,空間隣接画素に類似の属性を付加してスーパーピクセルにクラスタリング可能な,凸局所性制約付きサブスペースクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-11T06:18:36Z) - Contrastive Rendering for Ultrasound Image Segmentation [59.23915581079123]
米国の画像にシャープな境界がないことは、セグメンテーションに固有の課題である。
我々は,US画像における境界推定を改善するための,新しい,効果的なフレームワークを提案する。
提案手法は最先端の手法より優れており,臨床応用の可能性も高い。
論文 参考訳(メタデータ) (2020-10-10T07:14:03Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。