KGIF: Optimizing Relation-Aware Recommendations with Knowledge Graph Information Fusion
- URL: http://arxiv.org/abs/2501.04161v1
- Date: Tue, 07 Jan 2025 22:19:15 GMT
- Title: KGIF: Optimizing Relation-Aware Recommendations with Knowledge Graph Information Fusion
- Authors: Dong Hyun Jeon, Wenbo Sun, Houbing Herbert Song, Dongfang Liu, Velasquez Alvaro, Yixin Chloe Xie, Shuteng Niu,
- Abstract summary: This study introduces a specialized framework designed to merge entity and relation embeddings explicitly through a tailored self-attention mechanism.
This explicit fusion enhances the interplay between user-item interactions and item-attribute relationships, providing a nuanced balance between user-centric and item-centric representations.
The contributions of this work include an innovative method for explicit information fusion, improved robustness for sparse knowledge graphs, and the ability to generate explainable recommendations through interpretable path visualization.
- Score: 16.971592142597544
- License:
- Abstract: While deep-learning-enabled recommender systems demonstrate strong performance benchmarks, many struggle to adapt effectively in real-world environments due to limited use of user-item relationship data and insufficient transparency in recommendation generation. Traditional collaborative filtering approaches fail to integrate multifaceted item attributes, and although Factorization Machines account for item-specific details, they overlook broader relational patterns. Collaborative knowledge graph-based models have progressed by embedding user-item interactions with item-attribute relationships, offering a holistic perspective on interconnected entities. However, these models frequently aggregate attribute and interaction data in an implicit manner, leaving valuable relational nuances underutilized. This study introduces the Knowledge Graph Attention Network with Information Fusion (KGIF), a specialized framework designed to merge entity and relation embeddings explicitly through a tailored self-attention mechanism. The KGIF framework integrates reparameterization via dynamic projection vectors, enabling embeddings to adaptively represent intricate relationships within knowledge graphs. This explicit fusion enhances the interplay between user-item interactions and item-attribute relationships, providing a nuanced balance between user-centric and item-centric representations. An attentive propagation mechanism further optimizes knowledge graph embeddings, capturing multi-layered interaction patterns. The contributions of this work include an innovative method for explicit information fusion, improved robustness for sparse knowledge graphs, and the ability to generate explainable recommendations through interpretable path visualization.
Related papers
- EDGE-Rec: Efficient and Data-Guided Edge Diffusion For Recommender Systems Graphs [0.0]
We propose a new attention mechanism to take advantage of real-valued interaction weights as well as user and item features directly.
We train a novel Graph Diffusion Transformer GDiT architecture to iteratively denoise the weighted interaction matrix of the user-item interaction graph directly.
Inspired by the recent progress in text-conditioned image generation, our method directly produces user-item rating predictions on the same scale as the original ratings.
arXiv Detail & Related papers (2024-09-23T03:23:20Z) - Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
We propose a novel framework that aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.
The core idea is to map users and items into discrete codes rich in collaborative information for reliable and informative contrastive view generation.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - An Efficient Recommendation Model Based on Knowledge Graph Attention-Assisted Network (KGATAX) [0.0]
This study proposes a novel recommendation model, Knowledge Graph Attention-assisted Network (KGAT-AX)
We first incorporate the knowledge graph into the recommendation model, introducing an attention mechanism to explore higher order connectivity.
We integrate auxiliary information into entities through holographic embeddings, aggregating the information of adjacent entities for each entity by learning their inferential relationships.
arXiv Detail & Related papers (2024-09-05T16:42:50Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Social Recommendation with Self-Supervised Metagraph Informax Network [21.41026069530997]
We propose a Self-Supervised Metagraph Infor-max Network (SMIN) which investigates the potential of incorporating social- and knowledge-aware relational structures into the user preference representation for recommendation.
To inject high-order collaborative signals, we generalize the mutual information learning paradigm under the self-supervised graph-based collaborative filtering.
Experimental results on several real-world datasets demonstrate the effectiveness of our SMIN model over various state-of-the-art recommendation methods.
arXiv Detail & Related papers (2021-10-08T08:18:37Z) - Knowledge Graph Embedding using Graph Convolutional Networks with
Relation-Aware Attention [3.803929794912623]
Knowledge graph embedding methods learn embeddings of entities and relations in a low dimensional space.
Various graph convolutional network methods have been proposed which use different types of information to learn the features of entities and relations.
We propose a relation-aware graph attention model that leverages relation information to compute different weights to the neighboring nodes for learning embeddings of entities and relations.
arXiv Detail & Related papers (2021-02-14T17:19:44Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF) is a new model for learning informative representations of users and items from interaction data.
By modeling a distribution over intents for each user-item interaction, we iteratively refine the intent-aware interaction graphs and representations.
DGCF achieves significant improvements over several state-of-the-art models like NGCF, DisenGCN, and MacridVAE.
arXiv Detail & Related papers (2020-07-03T15:37:25Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.