An Efficient Recommendation Model Based on Knowledge Graph Attention-Assisted Network (KGATAX)
- URL: http://arxiv.org/abs/2409.15315v1
- Date: Thu, 5 Sep 2024 16:42:50 GMT
- Title: An Efficient Recommendation Model Based on Knowledge Graph Attention-Assisted Network (KGATAX)
- Authors: Zhizhong Wu,
- Abstract summary: This study proposes a novel recommendation model, Knowledge Graph Attention-assisted Network (KGAT-AX)
We first incorporate the knowledge graph into the recommendation model, introducing an attention mechanism to explore higher order connectivity.
We integrate auxiliary information into entities through holographic embeddings, aggregating the information of adjacent entities for each entity by learning their inferential relationships.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommendation systems play a crucial role in helping users filter through vast amounts of information. However, traditional recommendation algorithms often overlook the integration and utilization of multi-source information, limiting system performance. Therefore, this study proposes a novel recommendation model, Knowledge Graph Attention-assisted Network (KGAT-AX). We first incorporate the knowledge graph into the recommendation model, introducing an attention mechanism to explore higher order connectivity more explicitly. By using multilayer interactive information propagation, the model aggregates information to enhance its generalization ability. Furthermore, we integrate auxiliary information into entities through holographic embeddings, aggregating the information of adjacent entities for each entity by learning their inferential relationships. This allows for better utilization of auxiliary information associated with entities. We conducted experiments on real datasets to demonstrate the rationality and effectiveness of the KGAT-AX model. Through experimental analysis, we observed the effectiveness and potential of KGAT-AX compared to other baseline models on public datasets. KGAT-AX demonstrates better knowledge information capture and relationship learning capabilities.
Related papers
- KGIF: Optimizing Relation-Aware Recommendations with Knowledge Graph Information Fusion [16.971592142597544]
This study introduces a specialized framework designed to merge entity and relation embeddings explicitly through a tailored self-attention mechanism.
This explicit fusion enhances the interplay between user-item interactions and item-attribute relationships, providing a nuanced balance between user-centric and item-centric representations.
The contributions of this work include an innovative method for explicit information fusion, improved robustness for sparse knowledge graphs, and the ability to generate explainable recommendations through interpretable path visualization.
arXiv Detail & Related papers (2025-01-07T22:19:15Z) - Hyper-Relational Knowledge Graph Neural Network for Next POI [10.855112358613843]
Point of Interest (POI) recommendation systems in Location-based Social Networks (LBSN) have brought numerous benefits to users and companies.
Many existing works employ Knowledge Graph (KG) to alleviate the data sparsity issue in LBSN.
We propose a Hyper-Relational Knowledge Graph Neural Network (HKGNN) model to exploit the rich semantics of hyper-relations.
arXiv Detail & Related papers (2023-11-28T10:55:00Z) - A Personalized Recommender System Based-on Knowledge Graph Embeddings [0.0]
The recent emergence in interest for using knowledge graphs as a form of information modeling has led to their increased adoption in recommender systems.
By incorporating relevant users and relevant items into the knowledge graph, these systems can better capture the implicit connections between them and provide more accurate recommendations.
arXiv Detail & Related papers (2023-07-20T08:14:06Z) - DEKGCI: A double-sided recommendation model for integrating knowledge
graph and user-item interaction graph [0.0]
We propose DEKGCI, a novel double-sided recommendation model.
We use the high-order collaborative signals from the user-item interaction graph to enrich the user representations on the user side.
arXiv Detail & Related papers (2023-06-24T01:54:49Z) - Semantic Enhanced Knowledge Graph for Large-Scale Zero-Shot Learning [74.6485604326913]
We provide a new semantic enhanced knowledge graph that contains both expert knowledge and categories semantic correlation.
To propagate information on the knowledge graph, we propose a novel Residual Graph Convolutional Network (ResGCN)
Experiments conducted on the widely used large-scale ImageNet-21K dataset and AWA2 dataset show the effectiveness of our method.
arXiv Detail & Related papers (2022-12-26T13:18:36Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
We propose Knowledge-aware Conditional Attention Networks (KCAN) to incorporate knowledge graph into a recommender system.
We use a knowledge-aware attention propagation manner to obtain the node representation first, which captures the global semantic similarity on the user-item network and the knowledge graph.
Then, by applying a conditional attention aggregation on the subgraph, we refine the knowledge graph to obtain target-specific node representations.
arXiv Detail & Related papers (2021-11-03T09:40:43Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Knowledge-Enhanced Top-K Recommendation in Poincar\'e Ball [33.90069123451581]
We propose a recommendation model in the hyperbolic space, which facilitates the learning of the hierarchical structure of knowledge graphs.
A hyperbolic attention network is employed to determine the relative importances of neighboring entities of a certain item.
We show that the proposed model outperforms the best existing models by 2-16% in terms of NDCG@K on Top-K recommendation.
arXiv Detail & Related papers (2021-01-13T03:16:50Z) - Type-augmented Relation Prediction in Knowledge Graphs [65.88395564516115]
We propose a type-augmented relation prediction (TaRP) method, where we apply both the type information and instance-level information for relation prediction.
Our proposed TaRP method achieves significantly better performance than state-of-the-art methods on four benchmark datasets.
arXiv Detail & Related papers (2020-09-16T21:14:18Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.