論文の概要: Combining YOLO and Visual Rhythm for Vehicle Counting
- arxiv url: http://arxiv.org/abs/2501.04534v1
- Date: Wed, 08 Jan 2025 14:33:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:30.223193
- Title: Combining YOLO and Visual Rhythm for Vehicle Counting
- Title(参考訳): 自動車計数のためのYOLOと視覚リズムの組み合わせ
- Authors: Victor Nascimento Ribeiro, Nina S. T. Hirata,
- Abstract要約: ビデオによる車両の検知とカウントは、輸送インフラの管理において重要な役割を果たす。
従来の画像ベースのカウント手法は、通常、初期検出とその後の追跡という2つの主要なステップを含む。
本研究は、車両の検出とカウントのための代替的で効率的な方法を提案する。
- 参考スコア(独自算出の注目度): 0.36832029288386137
- License:
- Abstract: Video-based vehicle detection and counting play a critical role in managing transport infrastructure. Traditional image-based counting methods usually involve two main steps: initial detection and subsequent tracking, which are applied to all video frames, leading to a significant increase in computational complexity. To address this issue, this work presents an alternative and more efficient method for vehicle detection and counting. The proposed approach eliminates the need for a tracking step and focuses solely on detecting vehicles in key video frames, thereby increasing its efficiency. To achieve this, we developed a system that combines YOLO, for vehicle detection, with Visual Rhythm, a way to create time-spatial images that allows us to focus on frames that contain useful information. Additionally, this method can be used for counting in any application involving unidirectional moving targets to be detected and identified. Experimental analysis using real videos shows that the proposed method achieves mean counting accuracy around 99.15% over a set of videos, with a processing speed three times faster than tracking based approaches.
- Abstract(参考訳): ビデオによる車両の検知とカウントは、輸送インフラの管理において重要な役割を果たす。
従来の画像ベースのカウント手法では、初期検出と後続の追跡という2つの主要なステップがあり、これは全てのビデオフレームに適用され、計算の複雑さが大幅に増大する。
この問題に対処するため,本研究では,車両検出とカウントのための代替的で効率的な方法を提案する。
提案手法は、トラッキングステップの必要性を排除し、主要なビデオフレーム内の車両の検出のみに焦点を当て、効率を向上する。
これを実現するために,車体検出のためのYOLOと,有用な情報を含むフレームに注目する時間空間画像を作成するVisual Rhythmを組み合わせたシステムを開発した。
さらに、この手法は、一方向移動目標を検知・識別するあらゆるアプリケーションにおいて、カウントに使用することができる。
実ビデオを用いた実験解析により,提案手法は一組の動画に対して平均99.15%の精度を達成し,処理速度はトラッキングベース手法の3倍速かった。
関連論文リスト
- No Identity, no problem: Motion through detection for people tracking [48.708733485434394]
本稿では,検出のみの監視を行いながら,動きの手がかりを利用する手法を提案する。
提案アルゴリズムは,2つの画像間の2次元運動推定とともに,2つの異なるタイミングで熱マップを検出する。
提案手法は,MOT17およびWILDTRACKデータセット上でのマルチターゲット・シングルビュー・マルチターゲット・トラッキングに対して,最先端の結果を提供する。
論文 参考訳(メタデータ) (2024-11-25T15:13:17Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - Real-Time Driver Monitoring Systems through Modality and View Analysis [28.18784311981388]
ドライバーの気晴らしが道路事故の主要な原因であることが知られている。
State-of-the-artメソッドはレイテンシを無視しながら精度を優先する。
本稿では,ビデオフレーム間の時間的関係を無視した時間効率な検出モデルを提案する。
論文 参考訳(メタデータ) (2022-10-17T21:22:41Z) - TrackNet: A Triplet metric-based method for Multi-Target Multi-Camera
Vehicle Tracking [0.0]
本稿では,交通映像からのマルチターゲットマルチカメラ(MTMC)車両追跡手法であるTrackNetを提案する。
提案手法は,まずFaster R-CNNを用いて車両のフレーム・バイ・フレーム検出を行い,次いでKalmanフィルタを用いて1台のカメラで検出を追跡し,最終的に3重メトリック学習戦略によってトラックをマッチングする。
論文 参考訳(メタデータ) (2022-05-27T09:40:00Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
実用的長期トラッカーは、典型的には3つの重要な特性を含む。
効率的なモデル設計、効果的なグローバル再検出戦略、堅牢な気晴らし認識メカニズム。
動的畳み込み (d-convs) と多重オブジェクト追跡 (MOT) の哲学を用いて, 注意をそらした高速トラッキングを実現するための2タスクトラッキングフレームワーク(DMTrack)を提案する。
我々のトラッカーはLaSOT, OxUvA, TLP, VOT2018LT, VOT 2019LTベンチマークの最先端性能を実現し, リアルタイム3倍高速に動作させる。
論文 参考訳(メタデータ) (2021-04-25T00:59:53Z) - Object Detection and Tracking Algorithms for Vehicle Counting: A
Comparative Analysis [3.093890460224435]
著者は、さまざまな種類の車両を検出し、追跡するために、アートオブジェクトの検出と追跡アルゴリズムのいくつかの状態をデプロイする。
モデルの組み合わせを検証し、手動で数えた9時間以上の交通映像データと比較する。
その結果,CentralNet,Deep SORT,Deuterron2,Deep SORT,YOLOv4,Deep SORTの組み合わせは全車種で最高の総計数率を示した。
論文 参考訳(メタデータ) (2020-07-31T17:49:27Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
本稿では,ディープニューラルネットワークのエンドツーエンドトレーニングに基づくカメラによる車間距離と相対速度推定手法を提案する。
提案手法の重要な特徴は,2つの時間的単眼フレームによって提供される複数の視覚的手がかりの統合である。
また,移動場における視線歪みの影響を緩和する車両中心サンプリング機構を提案する。
論文 参考訳(メタデータ) (2020-06-07T08:18:31Z) - Deep Learning Based Vehicle Tracking System Using License Plate
Detection And Recognition [0.0]
提案システムは,車両ナンバープレート検出・認識(OCR)技術を用いた車両追跡の新しい手法を用いている。
結果は、人間に近い精度で毎秒30フレームの速度で得られた。
論文 参考訳(メタデータ) (2020-05-10T14:03:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。