論文の概要: Do Automated Fixes Truly Mitigate Smart Contract Exploits?
- arxiv url: http://arxiv.org/abs/2501.04600v1
- Date: Wed, 08 Jan 2025 16:31:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:33.847406
- Title: Do Automated Fixes Truly Mitigate Smart Contract Exploits?
- Title(参考訳): 自動修正はスマートコントラクトのエクスプロイトを完全に軽減するか?
- Authors: Sofia Bobadilla, Monica Jin, Martin Monperrus,
- Abstract要約: 本稿では,スマートコントラクトのためのプログラム修復ツールの活用性を評価するための,新しい,体系的な実験フレームワークを提案する。
脆弱なスマートコントラクト143のデータセットを使用して、20の最先端のAPRツールを質的かつ定量的に分析する。
術式は27%から73%に低下した。
- 参考スコア(独自算出の注目度): 7.570246812206772
- License:
- Abstract: Automated Program Repair (APR) for smart contract security promises to automatically mitigate smart contract vulnerabilities responsible for billions in financial losses. However, the true effectiveness of this research in addressing smart contract exploits remains uncharted territory. This paper bridges this critical gap by introducing a novel and systematic experimental framework for evaluating exploit mitigation of program repair tools for smart contracts. We qualitatively and quantitatively analyze 20 state-of-the-art APR tools using a dataset of 143 vulnerable smart contracts, for which we manually craft 91 executable exploits. We are the very first to define and measure the essential "exploit mitigation rate", giving researchers and practitioners and real sense of effectiveness of cutting edge techniques. Our findings reveal substantial disparities in the state of the art, with an exploit mitigation rate ranging from a low of 27% to a high of 73%, a result that nobody would guess from reading the original papers. Our study identifies systemic limitations, such as inconsistent functionality preservation, that must be addressed in future research on program repair for smart contracts.
- Abstract(参考訳): スマートコントラクトセキュリティのための自動プログラム修復(APR)は、数十億ドルの損失の原因となるスマートコントラクトの脆弱性を自動的に軽減する。
しかし、スマートコントラクトエクスプロイトへの対処における本研究の真の有効性は、まだ未解決領域である。
本稿では,スマートコントラクトのためのプログラム修復ツールの実用性を評価するための,新しい,体系的な実験フレームワークを導入することで,この重要なギャップを埋める。
私たちは143の脆弱なスマートコントラクトのデータセットを使用して、20の最先端のAPRツールを質的かつ定量的に分析し、91の実行可能なエクスプロイトを手作業で作成します。
私たちは、研究者や実践者が最先端技術の有効性を実感する上で、不可欠な「爆発的緩和率」を定義し、測定する最初の人です。
調査の結果は,27%から73%の高水準のエクスプロイト緩和率で,最先端技術では大きな差異があることが判明した。
本研究は,スマートコントラクトのプログラム修復に関する今後の研究で対処すべき,一貫性のない機能保存などのシステム的制約を明らかにする。
関連論文リスト
- Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
本稿では,契約設計によるオンライン学習問題において,利害関係者の経済的利益を整合させる理論的枠組みを提案する。
計画問題に対して、遠目エージェントに対する最適契約を決定するための効率的な動的プログラミングアルゴリズムを設計する。
学習問題に対して,契約の堅牢な設計から探索と搾取のバランスに至るまでの課題を解き放つために,非回帰学習アルゴリズムの汎用設計を導入する。
論文 参考訳(メタデータ) (2024-07-01T16:53:00Z) - Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We? [14.974832502863526]
近年,スマートコントラクトセキュリティの重要性が高まっている。
この問題に対処するため、スマートコントラクトの脆弱性を検出するために、多数の静的アプリケーションセキュリティテスト(SAST)ツールが提案されている。
本稿では,スマートコントラクトに対する45種類の脆弱性を含む,最新のきめ細かな分類法を提案する。
論文 参考訳(メタデータ) (2024-04-28T13:40:18Z) - Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey [0.6554326244334866]
本稿では,開発者がセキュアなスマート技術を開発するのを支援することを目的とした,文献レビューと実験報告を組み合わせる。
頻繁な脆弱性とそれに対応する緩和ソリューションのリストを提供する。
サンプルのスマートコントラクト上でそれらを実行し、テストすることで、コミュニティが最も広く使用しているツールを評価します。
論文 参考訳(メタデータ) (2024-03-28T19:36:53Z) - Efficiently Detecting Reentrancy Vulnerabilities in Complex Smart Contracts [35.26195628798847]
既存の脆弱性検出ツールは、複雑なコントラクトにおける脆弱性の効率性や検出成功率の面では不十分である。
SliSEは、複雑なコントラクトに対するReentrancy脆弱性を検出する堅牢で効率的な方法を提供する。
論文 参考訳(メタデータ) (2024-03-17T16:08:30Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
2023年だけでも、そのような脆弱性は数十億ドルを超える巨額の損失をもたらした。
スマートコントラクトの脆弱性を検出し、軽減するために、さまざまなツールが開発されている。
本研究では,既存のセキュリティスキャナの有効性と,現在も継続している脆弱性とのギャップについて検討する。
論文 参考訳(メタデータ) (2023-12-27T11:26:26Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
人間は、新しいタスクを学ぶ際に、過去の経験を明確に表現する能力を持っている。
本稿では,歴史情報を活用するためのアドオンモジュールとして,自己参照(SR)アプローチを提案する。
提案手法は,非教師付き強化学習ベンチマークにおけるIQM(Interquartile Mean)性能と最適ギャップ削減の両面から,最先端の成果を実現する。
論文 参考訳(メタデータ) (2023-11-16T09:07:34Z) - Pre-deployment Analysis of Smart Contracts -- A Survey [0.27195102129095]
本稿では,スマートコントラクトの脆弱性と方法に関する文献を体系的にレビューする。
具体的には、スマートコントラクトの脆弱性とメソッドを、それらが対処するプロパティによって列挙し分類します。
異なる手法の強みに関するいくつかのパターンがこの分類プロセスを通して現れる。
論文 参考訳(メタデータ) (2023-01-15T12:36:56Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。