論文の概要: Resilient Peer-to-peer Learning based on Adaptive Aggregation
- arxiv url: http://arxiv.org/abs/2501.04610v1
- Date: Wed, 08 Jan 2025 16:47:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:55:22.474597
- Title: Resilient Peer-to-peer Learning based on Adaptive Aggregation
- Title(参考訳): アダプティブアグリゲーションに基づくレジリエントピアツーピアラーニング
- Authors: Chandreyee Bhowmick, Xenofon Koutsoukos,
- Abstract要約: ピアツーピアネットワークでの協調学習は、単一障害点を緩和しながら学習の利点を提供する。
敵の労働者は ネットワークに悪意のある情報を注入することで 潜在的な脅威を引き起こす
本稿では,類似性学習プロセスの育成を目的としたレジリエントアグリゲーション手法を提案する。
- 参考スコア(独自算出の注目度): 0.5530212768657544
- License:
- Abstract: Collaborative learning in peer-to-peer networks offers the benefits of distributed learning while mitigating the risks associated with single points of failure inherent in centralized servers. However, adversarial workers pose potential threats by attempting to inject malicious information into the network. Thus, ensuring the resilience of peer-to-peer learning emerges as a pivotal research objective. The challenge is exacerbated in the presence of non-convex loss functions and non-iid data distributions. This paper introduces a resilient aggregation technique tailored for such scenarios, aimed at fostering similarity among peers' learning processes. The aggregation weights are determined through an optimization procedure, and use the loss function computed using the neighbor's models and individual private data, thereby addressing concerns regarding data privacy in distributed machine learning. Theoretical analysis demonstrates convergence of parameters with non-convex loss functions and non-iid data distributions. Empirical evaluations across three distinct machine learning tasks support the claims. The empirical findings, which encompass a range of diverse attack models, also demonstrate improved accuracy when compared to existing methodologies.
- Abstract(参考訳): ピアツーピアネットワークにおける協調学習は、集中型サーバに固有の単一障害点に関連するリスクを軽減しつつ、分散学習の利点を提供する。
しかし、敵の労働者は、悪意のある情報をネットワークに注入しようとすることで潜在的な脅威を引き起こす。
このように、ピアツーピア学習のレジリエンスを確保することが、重要な研究目的である。
この課題は、非凸損失関数と非イドデータ分布の存在によって悪化する。
本稿では,学習過程の類似性を高めることを目的とした,このようなシナリオに適したレジリエントアグリゲーション手法を提案する。
集約重みは最適化手順によって決定され、隣人のモデルと個々のプライベートデータを用いて計算された損失関数を使用して、分散機械学習におけるデータのプライバシに関する懸念に対処する。
理論的解析は、非凸損失関数と非イドデータ分布を持つパラメータの収束を示す。
3つの異なる機械学習タスクに対する経験的評価は、クレームをサポートする。
多様な攻撃モデルを含む実験結果からは,既存手法と比較して精度が向上した。
関連論文リスト
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
また, 予測誤差を誘導するために, 逆例を独立に学習した別のモデルに移すことが可能であることを示す。
本稿では,頑健な伝達可能な特徴抽出器(RTFE)と呼ばれる,ディープラーニングに基づく事前処理機構を提案する。
論文 参考訳(メタデータ) (2022-09-14T21:09:34Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
本研究では,個別のエージェントが異なる次元のストリーミング特徴を観察しながら分類問題の解決を目指す分散アーキテクチャを提案する。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
論文 参考訳(メタデータ) (2021-12-17T12:47:18Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Information Stealing in Federated Learning Systems Based on Generative
Adversarial Networks [0.5156484100374059]
我々は,3つの異なるデータセットを用いて,連邦学習環境(FL)に敵対的攻撃を仕掛けた。
この攻撃は、GAN(Generative Adversarial Network)を利用して学習プロセスに影響を及ぼした。
対象者の実際のデータを,すべての適用データセットを用いて共有グローバルモデルパラメータから再構成した。
論文 参考訳(メタデータ) (2021-08-02T08:12:43Z) - Cross-Validation and Uncertainty Determination for Randomized Neural
Networks with Applications to Mobile Sensors [0.0]
極端学習マシンは、限られたコンピュータリソースとグリーン機械学習の下で教師付き学習を行うための魅力的で効率的な方法を提供する。
このようなネットワークと回帰手法による教師あり学習について,一般化と予測誤差の整合性および境界性の観点から考察した。
論文 参考訳(メタデータ) (2021-01-06T12:28:06Z) - Byzantine Resilient Distributed Multi-Task Learning [6.850757447639822]
タスク間の関連性を学習するための分散アルゴリズムは、ビザンティンエージェントの存在下では回復力がないことを示す。
ビザンチンレジリエントな分散マルチタスク学習のためのアプローチを提案する。
論文 参考訳(メタデータ) (2020-10-25T04:32:52Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
本稿では,2つの同時手法を合体させて,不均衡な画像のバランスを回復する手法を提案する。
我々のモデルでは、生成的および識別的ネットワークは、新しい競争力のあるゲームをする。
カプセルGANの合体は、畳み込みGANと比較して非常に少ないパラメータで重なり合うクラスを認識するのに効果的である。
論文 参考訳(メタデータ) (2020-04-05T12:36:06Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。