論文の概要: "Can you be my mum?": Manipulating Social Robots in the Large Language Models Era
- arxiv url: http://arxiv.org/abs/2501.04633v1
- Date: Wed, 08 Jan 2025 17:29:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:08.660768
- Title: "Can you be my mum?": Manipulating Social Robots in the Large Language Models Era
- Title(参考訳): 「あなたは私のママですか?」:大規模言語モデル時代における社会ロボットの操り方
- Authors: Giulio Antonio Abbo, Gloria Desideri, Tony Belpaeme, Micol Spitale,
- Abstract要約: この研究は、日常的なユーザーが言語モデルを利用して倫理的原則に違反しようとする方法を理解することを目的としている。
実験では,ミスティロボットと対話する21人の大学生を対象に実験を行った。
その結果,情緒的言語を用いた侮辱や哀れみへの訴えなど,5つのテクニックを参加者が採用していることが判明した。
- 参考スコア(独自算出の注目度): 3.4565684255652065
- License:
- Abstract: Recent advancements in robots powered by large language models have enhanced their conversational abilities, enabling interactions closely resembling human dialogue. However, these models introduce safety and security concerns in HRI, as they are vulnerable to manipulation that can bypass built-in safety measures. Imagining a social robot deployed in a home, this work aims to understand how everyday users try to exploit a language model to violate ethical principles, such as by prompting the robot to act like a life partner. We conducted a pilot study involving 21 university students who interacted with a Misty robot, attempting to circumvent its safety mechanisms across three scenarios based on specific HRI ethical principles: attachment, freedom, and empathy. Our results reveal that participants employed five techniques, including insulting and appealing to pity using emotional language. We hope this work can inform future research in designing strong safeguards to ensure ethical and secure human-robot interactions.
- Abstract(参考訳): 大規模言語モデルを用いたロボットの最近の進歩は会話能力を高め、人間の対話によく似た対話を可能にしている。
しかし、これらのモデルは、組込み安全対策を回避できる操作に弱いため、HRIに安全性とセキュリティ上の懸念をもたらす。
家庭に配備された社会ロボットを想像すると、この研究は、日常的なユーザーが言語モデルを利用して倫理的原則に違反しようとする方法を理解することを目的としている。
我々は、ミスティロボットと対話する21人の大学生を対象に、特定のHRI倫理原則(愛着、自由、共感)に基づいて、3つのシナリオにまたがる安全メカニズムを回避しようとするパイロット研究を行った。
その結果,情緒的言語を用いた侮辱や哀れみへの訴えなど,5つのテクニックを参加者が採用していることが判明した。
この研究が、倫理的かつ安全な人間とロボットの相互作用を確保するための強力な安全を設計する上で、将来の研究に役立てることを願っている。
関連論文リスト
- Leveraging Large Language Models in Human-Robot Interaction: A Critical Analysis of Potential and Pitfalls [0.0]
大規模言語モデル(LLM)と視覚言語モデル(VLM)は、社会支援ロボット(SAR)における前例のない機会と課題を提示する
我々は、HRI研究における主要なロボットとSARの重要応用を探求する250以上の論文のメタスタディを行い、教育、医療、エンターテイメントを強調しながら、ロボット開発者が対処すべき社会的規範や問題、信頼、偏見、倫理に対処する。
我々は,LSM や VLM を SAR に導入するための責任と効果的な経路を概説する。
論文 参考訳(メタデータ) (2024-03-26T15:36:40Z) - Ain't Misbehavin' -- Using LLMs to Generate Expressive Robot Behavior in
Conversations with the Tabletop Robot Haru [9.2526849536751]
本稿では,大規模言語モデル(LLM)を利用して,表現行動を伴うロボット応答を生成する,完全自動会話システムを提案する。
提案したシステムを用いて,ボランティアが社会ロボットとチャットし,そのフィードバックを分析し,チャットテキストの厳密な誤り解析を行う。
最も否定的なフィードバックは、会話に限られた影響を及ぼす自動音声認識(ASR)エラーによるものだった。
論文 参考訳(メタデータ) (2024-02-18T12:35:52Z) - Developing Social Robots with Empathetic Non-Verbal Cues Using Large
Language Models [2.5489046505746704]
我々は,音声,行動(妊娠),表情,感情の4種類の共感的非言語的手がかりを社会ロボットで設計し,ラベル付けする。
予備的な結果は、ロボットの反応において「喜び」や「リリー」のような穏やかでポジティブな社会的感情の好みや、頻繁にうなずく動作など、異なるパターンが示される。
我々の研究は、言語と非言語の両方が社会的・共感的なロボットを作る上で不可欠な役割を強調し、人間とロボットの相互作用に関する将来の研究の基盤となる。
論文 参考訳(メタデータ) (2023-08-31T08:20:04Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [64.77385130665128]
このワークショップの目的は、人間とロボットの効果的で長期にわたるコラボレーションに向けた過去および現在進行中の研究についての洞察の交換を促進することである。
特に、自律的およびプロアクティブなインタラクションを実装するために必要なAI技術に焦点を当てています。
論文 参考訳(メタデータ) (2022-06-07T11:12:45Z) - Two ways to make your robot proactive: reasoning about human intentions,
or reasoning about possible futures [69.03494351066846]
ロボットをアクティブにする方法を2つ検討する。
1つの方法は人間の意図を認識し、あなたが交差しようとしているドアを開くなど、それらを満たすために行動することである。
もう1つの方法は、将来起こりうる脅威や機会を推論し、それを防ぐか、または育てるために行動することである。
論文 参考訳(メタデータ) (2022-05-11T13:33:14Z) - Doing Right by Not Doing Wrong in Human-Robot Collaboration [8.078753289996417]
本研究では,ポジティブ行動の再現ではなく,ネガティブ行動の回避によって,公平で社会的行動を学ぶための新しいアプローチを提案する。
本研究では,ロボット操作における社会性の導入の重要性と,人間とロボットの相互作用における公平性を検討することの重要性を強調した。
論文 参考訳(メタデータ) (2022-02-05T23:05:10Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
本研究では,ロボットインタラクションポリシーを強化するために,強化学習を伴うマルチモーダルヒューマンロボットインタラクション(HRI)フレームワークを実証する。
目標は、ロボットがより自然で魅力的なHRIフレームワークを作れるように、このフレームワークを社会シナリオに適用することだ。
論文 参考訳(メタデータ) (2021-10-08T00:35:44Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [65.60507052509406]
本ワークショップの目的は,学界や産業の研究者に対して,人間とロボットの関係の学際性と学際性について議論する機会を提供することである。
論文 参考訳(メタデータ) (2021-03-23T16:52:12Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。