Knowledge Retrieval Based on Generative AI
- URL: http://arxiv.org/abs/2501.04635v2
- Date: Thu, 16 Jan 2025 09:30:38 GMT
- Title: Knowledge Retrieval Based on Generative AI
- Authors: Te-Lun Yang, Jyi-Shane Liu, Yuen-Hsien Tseng, Jyh-Shing Roger Jang,
- Abstract summary: This study develops a question-answering system based on Retrieval-Augmented Generation (RAG) using Chinese Wikipedia and Lawbank as retrieval sources.<n>The system employs BGE-M3 for dense vector retrieval to obtain highly relevant search results and BGE-reranker to reorder these results based on query relevance.
- Score: 4.9328530417790954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study develops a question-answering system based on Retrieval-Augmented Generation (RAG) using Chinese Wikipedia and Lawbank as retrieval sources. Using TTQA and TMMLU+ as evaluation datasets, the system employs BGE-M3 for dense vector retrieval to obtain highly relevant search results and BGE-reranker to reorder these results based on query relevance. The most pertinent retrieval outcomes serve as reference knowledge for a Large Language Model (LLM), enhancing its ability to answer questions and establishing a knowledge retrieval system grounded in generative AI. The system's effectiveness is assessed through a two-stage evaluation: automatic and assisted performance evaluations. The automatic evaluation calculates accuracy by comparing the model's auto-generated labels with ground truth answers, measuring performance under standardized conditions without human intervention. The assisted performance evaluation involves 20 finance-related multiple-choice questions answered by 20 participants without financial backgrounds. Initially, participants answer independently. Later, they receive system-generated reference information to assist in answering, examining whether the system improves accuracy when assistance is provided. The main contributions of this research are: (1) Enhanced LLM Capability: By integrating BGE-M3 and BGE-reranker, the system retrieves and reorders highly relevant results, reduces hallucinations, and dynamically accesses authorized or public knowledge sources. (2) Improved Data Privacy: A customized RAG architecture enables local operation of the LLM, eliminating the need to send private data to external servers. This approach enhances data security, reduces reliance on commercial services, lowers operational costs, and mitigates privacy risks.
Related papers
- The Great Nugget Recall: Automating Fact Extraction and RAG Evaluation with Large Language Models [53.12387628636912]
We propose an automatic evaluation framework that is validated against human annotations.
This approach was originally developed for the TREC Question Answering (QA) Track in 2003.
We observe strong agreement at the run level between scores derived from fully automatic nugget evaluation and human-based variants.
arXiv Detail & Related papers (2025-04-21T12:55:06Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.
SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.
We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - SePer: Measure Retrieval Utility Through The Lens Of Semantic Perplexity Reduction [20.6787276745193]
We introduce an automatic evaluation method that measures retrieval quality through the lens of information gain within the RAG framework.
We quantify the utility of retrieval by the extent to which it reduces semantic perplexity post-retrieval.
arXiv Detail & Related papers (2025-03-03T12:37:34Z) - Trustworthy Answers, Messier Data: Bridging the Gap in Low-Resource Retrieval-Augmented Generation for Domain Expert Systems [7.76315323320043]
We introduce a data generation pipeline that transforms raw multi-modal data into structured corpus and Q&A pairs.
Our system improves factual correctness (+1.94), informativeness (+1.16), and helpfulness (+1.67) over a non-RAG baseline.
Results highlight the effectiveness of our approach across distinct aspects, with strong answer grounding and transparency.
arXiv Detail & Related papers (2025-02-26T22:20:08Z) - Unanswerability Evaluation for Retreival Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.<n>We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage [74.70255719194819]
We introduce a novel framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question.
We use this framework to evaluate three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat.
We find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions.
arXiv Detail & Related papers (2024-10-20T22:59:34Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Do You Know What You Are Talking About? Characterizing Query-Knowledge Relevance For Reliable Retrieval Augmented Generation [19.543102037001134]
Language models (LMs) are known to suffer from hallucinations and misinformation.
Retrieval augmented generation (RAG) that retrieves verifiable information from an external knowledge corpus provides a tangible solution to these problems.
RAG generation quality is highly dependent on the relevance between a user's query and the retrieved documents.
arXiv Detail & Related papers (2024-10-10T19:14:55Z) - Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation [19.312330150540912]
An emerging application is using Large Language Models (LLMs) to enhance retrieval-augmented generation (RAG) capabilities.
We propose FRAMES, a high-quality evaluation dataset designed to test LLMs' ability to provide factual responses.
We present baseline results demonstrating that even state-of-the-art LLMs struggle with this task, achieving 0.40 accuracy with no retrieval.
arXiv Detail & Related papers (2024-09-19T17:52:07Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
We propose textbfVERA (textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented systems), a system designed to evaluate and enhance the retrieved context before response generation.
VERA employs an evaluator-cum-enhancer LLM that first checks if external retrieval is necessary, evaluates the relevance and redundancy of the retrieved context, and refines it to eliminate non-essential information.
arXiv Detail & Related papers (2024-09-18T16:10:47Z) - RAG based Question-Answering for Contextual Response Prediction System [0.4660328753262075]
Large Language Models (LLMs) have shown versatility in various Natural Language Processing (NLP) tasks.
Retrieval Augmented Generation (RAG) emerges as a promising technique to address this challenge.
This paper introduces an end-to-end framework that employs LLMs with RAG capabilities for industry use cases.
arXiv Detail & Related papers (2024-09-05T17:14:23Z) - Retrieval Augmented Thought Process for Private Data Handling in Healthcare [53.89406286212502]
We introduce the Retrieval-Augmented Thought Process (RATP)
RATP formulates the thought generation of Large Language Models (LLMs)
On a private dataset of electronic medical records, RATP achieves 35% additional accuracy compared to in-context retrieval-augmented generation for the question-answering task.
arXiv Detail & Related papers (2024-02-12T17:17:50Z) - ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems [46.522527144802076]
We introduce ARES, an Automated RAG Evaluation System, for evaluating RAG systems.
ARES finetunes lightweight LM judges to assess the quality of individual RAG components.
We make our code and datasets publicly available on Github.
arXiv Detail & Related papers (2023-11-16T00:39:39Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.