RAG based Question-Answering for Contextual Response Prediction System
- URL: http://arxiv.org/abs/2409.03708v2
- Date: Fri, 6 Sep 2024 14:18:20 GMT
- Title: RAG based Question-Answering for Contextual Response Prediction System
- Authors: Sriram Veturi, Saurabh Vaichal, Reshma Lal Jagadheesh, Nafis Irtiza Tripto, Nian Yan,
- Abstract summary: Large Language Models (LLMs) have shown versatility in various Natural Language Processing (NLP) tasks.
Retrieval Augmented Generation (RAG) emerges as a promising technique to address this challenge.
This paper introduces an end-to-end framework that employs LLMs with RAG capabilities for industry use cases.
- Score: 0.4660328753262075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown versatility in various Natural Language Processing (NLP) tasks, including their potential as effective question-answering systems. However, to provide precise and relevant information in response to specific customer queries in industry settings, LLMs require access to a comprehensive knowledge base to avoid hallucinations. Retrieval Augmented Generation (RAG) emerges as a promising technique to address this challenge. Yet, developing an accurate question-answering framework for real-world applications using RAG entails several challenges: 1) data availability issues, 2) evaluating the quality of generated content, and 3) the costly nature of human evaluation. In this paper, we introduce an end-to-end framework that employs LLMs with RAG capabilities for industry use cases. Given a customer query, the proposed system retrieves relevant knowledge documents and leverages them, along with previous chat history, to generate response suggestions for customer service agents in the contact centers of a major retail company. Through comprehensive automated and human evaluations, we show that this solution outperforms the current BERT-based algorithms in accuracy and relevance. Our findings suggest that RAG-based LLMs can be an excellent support to human customer service representatives by lightening their workload.
Related papers
- HawkBench: Investigating Resilience of RAG Methods on Stratified Information-Seeking Tasks [50.871243190126826]
HawkBench is a human-labeled, multi-domain benchmark designed to rigorously assess RAG performance.
By stratifying tasks based on information-seeking behaviors, HawkBench provides a systematic evaluation of how well RAG systems adapt to diverse user needs.
arXiv Detail & Related papers (2025-02-19T06:33:39Z) - Knowledge Retrieval Based on Generative AI [4.9328530417790954]
This study develops a question-answering system based on Retrieval-Augmented Generation (RAG) using Chinese Wikipedia and Lawbank as retrieval sources.
The system employs BGE-M3 for dense vector retrieval to obtain highly relevant search results and BGE-reranker to reorder these results based on query relevance.
arXiv Detail & Related papers (2025-01-08T17:29:46Z) - A Survey of Query Optimization in Large Language Models [10.255235456427037]
RAG mitigates the limitations of Large Language Models by dynamically retrieving and leveraging up-to-date relevant information.
QO has emerged as a critical element, playing a pivotal role in determining the effectiveness of RAG's retrieval stage.
arXiv Detail & Related papers (2024-12-23T13:26:04Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - MAG-V: A Multi-Agent Framework for Synthetic Data Generation and Verification [5.666070277424383]
MAG-V is a framework to generate a dataset of questions that mimic customer queries.
Our synthetic data can improve agent performance on actual customer queries.
arXiv Detail & Related papers (2024-11-28T19:36:11Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
AGENT-CQ consists of two stages: a generation stage and an evaluation stage.
CrowdLLM simulates human crowdsourcing judgments to assess generated questions and answers.
Experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality.
arXiv Detail & Related papers (2024-10-25T17:06:27Z) - An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
We propose SynthRAG, an innovative framework designed to enhance Question Answering (QA) performance.
SynthRAG improves on conventional models by employing adaptive outlines for dynamic content structuring.
An online deployment on the Zhihu platform revealed that SynthRAG's answers achieved notable user engagement.
arXiv Detail & Related papers (2024-10-23T09:14:57Z) - Beyond-RAG: Question Identification and Answer Generation in Real-Time Conversations [0.0]
In customer contact centers, human agents often struggle with long average handling times (AHT)
We propose a decision support system that can look beyond RAG by first identifying customer questions in real time.
If the query matches an FAQ, the system retrieves the answer directly from the FAQ database; otherwise, it generates answers via RAG.
arXiv Detail & Related papers (2024-10-14T04:06:22Z) - Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely [8.507599833330346]
Large language models (LLMs) augmented with external data have demonstrated remarkable capabilities in completing real-world tasks.
Retrieval-Augmented Generation (RAG) and fine-tuning are gaining increasing attention and widespread application.
However, the effective deployment of data-augmented LLMs across various specialized fields presents substantial challenges.
arXiv Detail & Related papers (2024-09-23T11:20:20Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.