RAG based Question-Answering for Contextual Response Prediction System
- URL: http://arxiv.org/abs/2409.03708v2
- Date: Fri, 6 Sep 2024 14:18:20 GMT
- Title: RAG based Question-Answering for Contextual Response Prediction System
- Authors: Sriram Veturi, Saurabh Vaichal, Reshma Lal Jagadheesh, Nafis Irtiza Tripto, Nian Yan,
- Abstract summary: Large Language Models (LLMs) have shown versatility in various Natural Language Processing (NLP) tasks.
Retrieval Augmented Generation (RAG) emerges as a promising technique to address this challenge.
This paper introduces an end-to-end framework that employs LLMs with RAG capabilities for industry use cases.
- Score: 0.4660328753262075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown versatility in various Natural Language Processing (NLP) tasks, including their potential as effective question-answering systems. However, to provide precise and relevant information in response to specific customer queries in industry settings, LLMs require access to a comprehensive knowledge base to avoid hallucinations. Retrieval Augmented Generation (RAG) emerges as a promising technique to address this challenge. Yet, developing an accurate question-answering framework for real-world applications using RAG entails several challenges: 1) data availability issues, 2) evaluating the quality of generated content, and 3) the costly nature of human evaluation. In this paper, we introduce an end-to-end framework that employs LLMs with RAG capabilities for industry use cases. Given a customer query, the proposed system retrieves relevant knowledge documents and leverages them, along with previous chat history, to generate response suggestions for customer service agents in the contact centers of a major retail company. Through comprehensive automated and human evaluations, we show that this solution outperforms the current BERT-based algorithms in accuracy and relevance. Our findings suggest that RAG-based LLMs can be an excellent support to human customer service representatives by lightening their workload.
Related papers
- AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
AGENT-CQ consists of two stages: a generation stage and an evaluation stage.
CrowdLLM simulates human crowdsourcing judgments to assess generated questions and answers.
Experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality.
arXiv Detail & Related papers (2024-10-25T17:06:27Z) - An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
We propose SynthRAG, an innovative framework designed to enhance Question Answering (QA) performance.
SynthRAG improves on conventional models by employing adaptive outlines for dynamic content structuring.
An online deployment on the Zhihu platform revealed that SynthRAG's answers achieved notable user engagement.
arXiv Detail & Related papers (2024-10-23T09:14:57Z) - Beyond-RAG: Question Identification and Answer Generation in Real-Time Conversations [0.0]
In customer contact centers, human agents often struggle with long average handling times (AHT)
We propose a decision support system that can look beyond RAG by first identifying customer questions in real time.
If the query matches an FAQ, the system retrieves the answer directly from the FAQ database; otherwise, it generates answers via RAG.
arXiv Detail & Related papers (2024-10-14T04:06:22Z) - Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely [8.507599833330346]
Large language models (LLMs) augmented with external data have demonstrated remarkable capabilities in completing real-world tasks.
Retrieval-Augmented Generation (RAG) and fine-tuning are gaining increasing attention and widespread application.
However, the effective deployment of data-augmented LLMs across various specialized fields presents substantial challenges.
arXiv Detail & Related papers (2024-09-23T11:20:20Z) - Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation [19.312330150540912]
An emerging application is using Large Language Models (LLMs) to enhance retrieval-augmented generation (RAG) capabilities.
We propose FRAMES, a high-quality evaluation dataset designed to test LLMs' ability to provide factual responses.
We present baseline results demonstrating that even state-of-the-art LLMs struggle with this task, achieving 0.40 accuracy with no retrieval.
arXiv Detail & Related papers (2024-09-19T17:52:07Z) - Evaluating ChatGPT on Nuclear Domain-Specific Data [0.0]
This paper examines the application of ChatGPT, a large language model (LLM), for question-and-answer (Q&A) tasks in the highly specialized field of nuclear data.
The primary focus is on evaluating ChatGPT's performance on a curated test dataset.
The findings underscore the improvement in performance when incorporating a RAG pipeline in an LLM.
arXiv Detail & Related papers (2024-08-26T08:17:42Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.