HyFusion: Enhanced Reception Field Transformer for Hyperspectral Image Fusion
- URL: http://arxiv.org/abs/2501.04665v3
- Date: Tue, 14 Jan 2025 09:11:42 GMT
- Title: HyFusion: Enhanced Reception Field Transformer for Hyperspectral Image Fusion
- Authors: Chia-Ming Lee, Yu-Fan Lin, Yu-Hao Ho, Li-Wei Kang, Chih-Chung Hsu,
- Abstract summary: Hyperspectral image (HSI) fusion addresses the challenge of reconstructing High-Resolution HSIs (HR-HSIs) from High-Resolution Multispectral images (HR-MSIs) and Low-Resolution HSIs (LR-HSIs)
- Score: 8.701181531082781
- License:
- Abstract: Hyperspectral image (HSI) fusion addresses the challenge of reconstructing High-Resolution HSIs (HR-HSIs) from High-Resolution Multispectral images (HR-MSIs) and Low-Resolution HSIs (LR-HSIs), a critical task given the high costs and hardware limitations associated with acquiring high-quality HSIs. While existing methods leverage spatial and spectral relationships, they often suffer from limited receptive fields and insufficient feature utilization, leading to suboptimal performance. Furthermore, the scarcity of high-quality HSI data highlights the importance of efficient data utilization to maximize reconstruction quality. To address these issues, we propose HyFusion, a novel Dual-Coupled Network (DCN) framework designed to enhance cross-domain feature extraction and enable effective feature map reusing. The framework first processes HR-MSI and LR-HSI inputs through specialized subnetworks that mutually enhance each other during feature extraction, preserving complementary spatial and spectral details. At its core, HyFusion utilizes an Enhanced Reception Field Block (ERFB), which combines shifting-window attention and dense connections to expand the receptive field, effectively capturing long-range dependencies while minimizing information loss. Extensive experiments demonstrate that HyFusion achieves state-of-the-art performance in HR-MSI/LR-HSI fusion, significantly improving reconstruction quality while maintaining a compact model size and computational efficiency. By integrating enhanced receptive fields and feature map reusing into a coupled network architecture, HyFusion provides a practical and effective solution for HSI fusion in resource-constrained scenarios, setting a new benchmark in hyperspectral imaging. Our code will be publicly available.
Related papers
- Unleashing Correlation and Continuity for Hyperspectral Reconstruction from RGB Images [64.80875911446937]
We propose a Correlation and Continuity Network (CCNet) for HSI reconstruction from RGB images.
For the correlation of local spectrum, we introduce the Group-wise Spectral Correlation Modeling (GrSCM) module.
For the continuity of global spectrum, we design the Neighborhood-wise Spectral Continuity Modeling (NeSCM) module.
arXiv Detail & Related papers (2025-01-02T15:14:40Z) - HSR-KAN: Efficient Hyperspectral Image Super-Resolution via Kolmogorov-Arnold Networks [0.16385815610837165]
We propose an efficient HSI super-resolution (HSI-SR) model to fuse a low-resolution HSI and a high-resolution multispectral image (HR-MSI)
To achieve the effective integration of spatial information from HR-MSI, we design a fusion module based on KANs.
As a channel attention module integrated with KANs, KAN-CAB enables networks to accurately simulate details of spectral sequences and spatial textures.
arXiv Detail & Related papers (2024-08-24T02:51:51Z) - CSAKD: Knowledge Distillation with Cross Self-Attention for Hyperspectral and Multispectral Image Fusion [9.3350274016294]
This paper introduces a novel knowledge distillation (KD) framework for HR-MSI/LR-HSI fusion to achieve SR of LR-HSI.
To fully exploit the spatial and spectral feature representations of LR-HSI and HR-MSI, we propose a novel Cross Self-Attention (CSA) fusion module.
Our experimental results demonstrate that the student model achieves comparable or superior LR-HSI SR performance.
arXiv Detail & Related papers (2024-06-28T05:25:57Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet)
To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain.
To further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain.
arXiv Detail & Related papers (2023-04-10T13:51:28Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.