論文の概要: Exploring Large Language Models for Semantic Analysis and Categorization of Android Malware
- arxiv url: http://arxiv.org/abs/2501.04848v1
- Date: Wed, 08 Jan 2025 21:22:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:42.810471
- Title: Exploring Large Language Models for Semantic Analysis and Categorization of Android Malware
- Title(参考訳): Android マルウェアのセマンティック解析と分類のための大規模言語モデル探索
- Authors: Brandon J Walton, Mst Eshita Khatun, James M Ghawaly, Aisha Ali-Gombe,
- Abstract要約: mspは、階層的な階層化チェーンと戦略的プロンプトエンジニアリングを通じて、Androidのマルウェア分析を強化するように設計されている。
mspは、関数、クラス、パッケージレベルで非常に堅牢な要約を提供しながら、最大77%の分類精度を達成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Malware analysis is a complex process of examining and evaluating malicious software's functionality, origin, and potential impact. This arduous process typically involves dissecting the software to understand its components, infection vector, propagation mechanism, and payload. Over the years, deep reverse engineering of malware has become increasingly tedious, mainly due to modern malicious codebases' fast evolution and sophistication. Essentially, analysts are tasked with identifying the elusive needle in the haystack within the complexities of zero-day malware, all while under tight time constraints. Thus, in this paper, we explore leveraging Large Language Models (LLMs) for semantic malware analysis to expedite the analysis of known and novel samples. Built on GPT-4o-mini model, \msp is designed to augment malware analysis for Android through a hierarchical-tiered summarization chain and strategic prompt engineering. Additionally, \msp performs malware categorization, distinguishing potential malware from benign applications, thereby saving time during the malware reverse engineering process. Despite not being fine-tuned for Android malware analysis, we demonstrate that through optimized and advanced prompt engineering \msp can achieve up to 77% classification accuracy while providing highly robust summaries at functional, class, and package levels. In addition, leveraging the backward tracing of the summaries from package to function levels allowed us to pinpoint the precise code snippets responsible for malicious behavior.
- Abstract(参考訳): マルウェア分析は、悪意のあるソフトウェアの機能、起源、潜在的な影響を調べ評価する複雑なプロセスである。
この困難なプロセスは、ソフトウェアを分離してそのコンポーネント、感染ベクター、伝播機構、ペイロードを理解するのが一般的である。
長年にわたり、マルウェアの深いリバースエンジニアリングは、主に現代の悪意のあるコードベースの急速な進化と高度化のために、ますます退屈になっている。
基本的に、アナリストは、ゼロデイマルウェアの複雑さの中で、干し草のスタックの吐き出す針を、厳密な時間的制約の下で識別する任務を負っている。
そこで本研究では,Large Language Models (LLMs) を利用したセマンティックマルウェア解析を行い,既知のサンプルや新しいサンプルの分析を高速化する。
GPT-4o-miniモデルに基づいて構築された \msp は,階層的な階層化チェーンと戦略的プロンプトエンジニアリングを通じて,Android 用のマルウェア解析を強化するように設計されている。
さらに、 \mspはマルウェア分類を行い、潜在的なマルウェアを良質なアプリケーションと区別し、マルウェアリバースエンジニアリングプロセスの時間を節約する。
Androidのマルウェア分析では微調整されていないが、最適化された高度なプロンプトエンジニアリングにより、 \mspは最大77%の分類精度を達成でき、機能、クラス、パッケージレベルで非常に堅牢な要約を提供する。
さらに、パッケージから関数レベルへのサマリーの後方トレースを活用することで、悪意のある振る舞いの原因となる正確なコードスニペットを特定できるようになったのです。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - A Lean Transformer Model for Dynamic Malware Analysis and Detection [0.0]
マルウェアは現代のコンピューティングの世界にとって急速に成長する脅威であり、既存の防衛線はこの問題に対処するのに十分な効率性を持っていない。
これまでの研究では、実行レポートから抽出したニューラルネットワークとAPI呼び出しシーケンスを活用することに成功した。
本稿では,悪意のあるファイルを検出するために,Transformersアーキテクチャに基づくエミュレーションオンリーモデルを設計する。
論文 参考訳(メタデータ) (2024-08-05T08:46:46Z) - A Wolf in Sheep's Clothing: Practical Black-box Adversarial Attacks for Evading Learning-based Windows Malware Detection in the Wild [39.28931186940845]
MalGuiseは、既存の学習ベースのWindowsマルウェア検出システムのセキュリティリスクを評価するブラックボックス敵攻撃フレームワークである。
MalGuiseの攻撃成功率は95%を超え、生成したマルウェアファイルの91%以上が同じセマンティクスを維持している。
論文 参考訳(メタデータ) (2024-07-03T08:01:19Z) - Unraveling the Key of Machine Learning Solutions for Android Malware
Detection [33.63795751798441]
本稿では,機械学習によるAndroidマルウェア検出に関する包括的調査を行う。
まず、文献を調査し、Androidの機能エンジニアリングとMLモデリングパイプラインに基づいた分類にコントリビューションを分類する。
そして、MLベースのAndroidマルウェア検出のための汎用フレームワークを設計し、異なる研究コミュニティから12の代表的なアプローチを再実装し、有効性、堅牢性、効率性の3つの主要な側面から評価する。
論文 参考訳(メタデータ) (2024-02-05T12:31:19Z) - Light up that Droid! On the Effectiveness of Static Analysis Features
against App Obfuscation for Android Malware Detection [42.50353398405467]
マルウェアの作者は、難読化を静的解析機能に基づいてマルウェア検出をバイパスする手段と見なしている。
本稿では,静的解析を用いて抽出した共通特徴に対する特定の難読化手法の影響を評価する。
本稿では,Android用MLマルウェア検出器を提案する。
論文 参考訳(メタデータ) (2023-10-24T09:07:23Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Adversarial Patterns: Building Robust Android Malware Classifiers [0.9208007322096533]
サイバーセキュリティの分野では、機械学習モデルがマルウェア検出において大幅に改善されている。
構造化されていないデータから複雑なパターンを理解する能力があるにもかかわらず、これらのモデルは敵攻撃の影響を受けやすい。
本稿では,Androidマルウェア分類器の文脈における敵機械学習の包括的レビューを行う。
論文 参考訳(メタデータ) (2022-03-04T03:47:08Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning [0.0]
Windows Portable Executable File (PE) を分類できるマルウェア分類パイプラインを提案する。
入力PEサンプルが与えられた場合、悪意または良性のいずれかに分類される。
悪意のある場合、パイプラインは脅威タイプ、家族、行動を確立するためにさらに分析する。
論文 参考訳(メタデータ) (2021-06-10T10:07:50Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。