論文の概要: Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning
- arxiv url: http://arxiv.org/abs/2106.05625v1
- Date: Thu, 10 Jun 2021 10:07:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:04:57.304136
- Title: Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning
- Title(参考訳): 機械学習によるマルウェアの検出と分類のための自動化パイプラインの提案
- Authors: Nicola Loi, Claudio Borile, Daniele Ucci
- Abstract要約: Windows Portable Executable File (PE) を分類できるマルウェア分類パイプラインを提案する。
入力PEサンプルが与えられた場合、悪意または良性のいずれかに分類される。
悪意のある場合、パイプラインは脅威タイプ、家族、行動を確立するためにさらに分析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The constant growth in the number of malware - software or code fragment
potentially harmful for computers and information networks - and the use of
sophisticated evasion and obfuscation techniques have seriously hindered
classic signature-based approaches. On the other hand, malware detection
systems based on machine learning techniques started offering a promising
alternative to standard approaches, drastically reducing analysis time and
turning out to be more robust against evasion and obfuscation techniques. In
this paper, we propose a malware taxonomic classification pipeline able to
classify Windows Portable Executable files (PEs). Given an input PE sample, it
is first classified as either malicious or benign. If malicious, the pipeline
further analyzes it in order to establish its threat type, family, and
behavior(s). We tested the proposed pipeline on the open source dataset EMBER,
containing approximately 1 million PE samples, analyzed through static
analysis. Obtained malware detection results are comparable to other academic
works in the current state of art and, in addition, we provide an in-depth
classification of malicious samples. Models used in the pipeline provides
interpretable results which can help security analysts in better understanding
decisions taken by the automated pipeline.
- Abstract(参考訳): マルウェアの数(コンピュータや情報ネットワークにとって潜在的に有害なソフトウェアやコードフラグメント)の絶え間ない増加と、高度な回避と難読化技術の使用は、古典的なシグネチャベースのアプローチをひどく妨げている。
一方で、機械学習技術に基づくマルウェア検出システムは、分析時間を劇的に短縮し、回避や難読化技術に対してより堅牢であることが判明した、標準的なアプローチに代わる有望な手段を提供し始めた。
本稿では,Windows Portable Executable File (PE) を分類できるマルウェア分類パイプラインを提案する。
入力PEサンプルが与えられた場合、悪意または良性のいずれかに分類される。
悪意のある場合、パイプラインは脅威タイプ、家族、行動(s)を確立するためにさらに分析する。
提案したパイプラインを,約100万個のPEサンプルを含むオープンソースのデータセットEMBERで静的解析により検証した。
得られたマルウェア検出結果は,現状の他の学術研究に匹敵するものであり,また,悪意のあるサンプルの詳細な分類も提供する。
パイプラインで使用されるモデルは解釈可能な結果を提供し、セキュリティアナリストが自動パイプラインによる決定をよりよく理解するのに役立つ。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Towards Novel Malicious Packet Recognition: A Few-Shot Learning Approach [0.0]
Deep Packet Inspection (DPI)は、ネットワークセキュリティを強化する重要な技術として登場した。
本研究では,大規模言語モデル(LLM)と少数ショット学習を活用する新しいアプローチを提案する。
提案手法は,マルウェアの種類によって平均精度86.35%,F1スコア86.40%の有望な結果を示す。
論文 参考訳(メタデータ) (2024-09-17T15:02:32Z) - Discovering Malicious Signatures in Software from Structural
Interactions [7.06449725392051]
本稿では,ディープラーニング,数学的手法,ネットワーク科学を活用する新しいマルウェア検出手法を提案する。
提案手法は静的および動的解析に焦点をあて,LLVM(Lower-Level Virtual Machine)を用いて複雑なネットワーク内のアプリケーションをプロファイリングする。
弊社のアプローチは、マルウェアの検出を大幅に改善し、より正確で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-12-19T23:42:20Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Deep Image: A precious image based deep learning method for online
malware detection in IoT Environment [12.558284943901613]
本稿では,マルウェア解析の異なる視点を考察し,各サンプルの特徴のリスクレベルを算出した。
通常の機械学習基準、すなわち精度とFPRに加えて、サンプルのリスクに基づく基準も提案されている。
その結果,ディープ・ラーニング・アプローチがマルウェアの検出に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-04-04T17:56:55Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - MalBERT: Using Transformers for Cybersecurity and Malicious Software
Detection [0.0]
注意に基づくディープラーニング技術のカテゴリであるtransformersは、最近、さまざまなタスクを解決する素晴らしい結果を示している。
本研究では,android アプリケーションのソースコードの静的解析を行う bert (bi representations from transformers) に基づくモデルを提案する。
得られた結果は、悪意のあるソフトウェア検出のためのTransformerベースのモデルによって得られた高い性能を示す。
論文 参考訳(メタデータ) (2021-03-05T17:09:46Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。