Self-Adaptive Ising Machines for Constrained Optimization
- URL: http://arxiv.org/abs/2501.04971v1
- Date: Thu, 09 Jan 2025 05:02:50 GMT
- Title: Self-Adaptive Ising Machines for Constrained Optimization
- Authors: Corentin Delacour,
- Abstract summary: We propose a self-adaptive IM that shapes its energy landscape using a Lagrange relaxation of constraints and avoids prior tuning of penalties.
We benchmark our algorithm with multidimensional knapsack problems (MKP) and quadratic knapsack problems (QKP), the latter being an Ising problem with linear constraints.
Our results show that adapting the energy landscape during the search can speed up IMs for constrained optimization.
- Score: 0.4450107621124637
- License:
- Abstract: Ising machines (IM) are physics-inspired alternatives to von Neumann architectures for solving hard optimization tasks. By mapping binary variables to coupled Ising spins, IMs can naturally solve unconstrained combinatorial optimization problems such as finding maximum cuts in graphs. However, despite their importance in practical applications, constrained problems remain challenging to solve for IMs that require large quadratic energy penalties to ensure the correspondence between energy ground states and constrained optimal solutions. To relax this requirement, we propose a self-adaptive IM that iteratively shapes its energy landscape using a Lagrange relaxation of constraints and avoids prior tuning of penalties. Using a probabilistic-bit (p-bit) IM emulated in software, we benchmark our algorithm with multidimensional knapsack problems (MKP) and quadratic knapsack problems (QKP), the latter being an Ising problem with linear constraints. For QKP with 300 variables, the proposed algorithm finds better solutions than state-of-the-art IMs such as Fujitsu's Digital Annealer and requires 7,500x fewer samples. Our results show that adapting the energy landscape during the search can speed up IMs for constrained optimization.
Related papers
- Non-Myopic Multi-Objective Bayesian Optimization [64.31753000439514]
We consider the problem of finite-horizon sequential experimental design to solve multi-objective optimization problems.
This problem arises in many real-world applications, including materials design.
We propose the first set of non-myopic methods for MOO problems.
arXiv Detail & Related papers (2024-12-11T04:05:29Z) - Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
We show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario.
We follow by submitting instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios.
arXiv Detail & Related papers (2024-06-11T19:59:05Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
We propose fermionic quantum approximate optimization algorithm (FQAOA) for solving optimization problems with constraints.
FQAOA tackle the constrains issue by using fermion particle number preservation to intrinsically impose them throughout QAOA.
We provide a systematic guideline for designing the driver Hamiltonian for a given problem Hamiltonian with constraints.
arXiv Detail & Related papers (2023-01-25T18:36:58Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - TIGER: Topology-aware Assignment using Ising machines Application to
Classical Algorithm Tasks and Quantum Circuit Gates [2.4047296366832307]
A mapping problem exists in gate-based quantum computing where the objective is to map tasks to gates in a topology fashion.
Existing task approaches are either or based on physical optimization algorithms, providing different speed and solution quality trade-offs.
We propose an algorithm that allows solving the topology-aware assignment problem using Ising machines.
arXiv Detail & Related papers (2020-09-21T19:46:59Z) - Max-value Entropy Search for Multi-Objective Bayesian Optimization with
Constraints [44.25245545568633]
In aviation power system design applications, we need to find the designs that trade-off total energy and the mass while satisfying specific thresholds for motor temperature and voltage of cells.
We propose a new approach referred as em Max-value Entropy Search for Multi-objective Optimization with Constraints (MESMOC) to solve this problem.
MESMOC employs an output-space entropy based acquisition function to efficiently select the sequence of inputs for evaluation to uncover high-quality pareto-set solutions.
arXiv Detail & Related papers (2020-09-01T05:00:01Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.