TIGER: Topology-aware Assignment using Ising machines Application to
Classical Algorithm Tasks and Quantum Circuit Gates
- URL: http://arxiv.org/abs/2009.10151v1
- Date: Mon, 21 Sep 2020 19:46:59 GMT
- Title: TIGER: Topology-aware Assignment using Ising machines Application to
Classical Algorithm Tasks and Quantum Circuit Gates
- Authors: Anastasiia Butko, Ilyas Turimbetov, George Michelogiannakis, David
Donofrio, Didem Unat, John Shalf
- Abstract summary: A mapping problem exists in gate-based quantum computing where the objective is to map tasks to gates in a topology fashion.
Existing task approaches are either or based on physical optimization algorithms, providing different speed and solution quality trade-offs.
We propose an algorithm that allows solving the topology-aware assignment problem using Ising machines.
- Score: 2.4047296366832307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimally mapping a parallel application to compute and communication
resources is increasingly important as both system size and heterogeneity
increase. A similar mapping problem exists in gate-based quantum computing
where the objective is to map tasks to gates in a topology-aware fashion. This
is an NP-complete graph isomorphism problem, and existing task assignment
approaches are either heuristic or based on physical optimization algorithms,
providing different speed and solution quality trade-offs. Ising machines such
as quantum and digital annealers have recently become available and offer an
alternative hardware solution to solve this type of optimization problems. In
this paper, we propose an algorithm that allows solving the topology-aware
assignment problem using Ising machines. We demonstrate the algorithm on two
use cases, i.e. classical task scheduling and quantum circuit gate scheduling.
TIGER---topology-aware task/gate assignment mapper tool---implements our
proposed algorithms and automatically integrates them into the quantum software
environment. To address the limitations of physical solver, we propose and
implement a domain-specific partition strategy that allows solving larger-scale
problems and a weight optimization algorithm that allows tuning Ising model
parameters to achieve better restuls. We use D-Wave's quantum annealer to
demonstrate our algorithm and evaluate the proposed tool flow in terms of
performance, partition efficiency, and solution quality. Results show
significant speed-up compared to classical solutions, better scalability, and
higher solution quality when using TIGER together with the proposed partition
method. It reduces the data movement cost by 68\% in average for quantum
circuit assignment compared to the IBM QX optimizer.
Related papers
- Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Evaluating the Practicality of Quantum Optimization Algorithms for
Prototypical Industrial Applications [44.88678858860675]
We investigate the application of the quantum approximate optimization algorithm (QAOA) and the quantum adiabatic algorithm (QAA) to the solution of a prototypical model in this field.
We compare the performance of these two algorithms in terms of solution quality, using selected evaluation metrics.
arXiv Detail & Related papers (2023-11-20T09:09:55Z) - Algorithm-Oriented Qubit Mapping for Variational Quantum Algorithms [3.990724104767043]
Quantum algorithms implemented on near-term devices require qubit mapping due to noise and limited qubit connectivity.
We propose a strategy called algorithm-oriented qubit mapping (AOQMAP) that aims to bridge the gap between exact and scalable mapping methods.
arXiv Detail & Related papers (2023-10-15T13:18:06Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
Vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry.
In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables.
arXiv Detail & Related papers (2023-06-14T13:44:35Z) - Quantum-Inspired Optimization over Permutation Groups [0.2294014185517203]
Quantum-inspired optimization (QIO) algorithms are computational techniques that emulate certain quantum mechanical effects on a classical hardware.
We develop an algorithmic framework, called Perm-QIO, to tailor QIO tools to solve an arbitrary optimization problem.
arXiv Detail & Related papers (2022-12-06T00:02:39Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.