Enhanced Min-Sum Decoding of Quantum Codes Using Previous Iteration Dynamics
- URL: http://arxiv.org/abs/2501.05021v1
- Date: Thu, 09 Jan 2025 07:28:26 GMT
- Title: Enhanced Min-Sum Decoding of Quantum Codes Using Previous Iteration Dynamics
- Authors: Dimitris Chytas, Nithin Raveendran, Bane Vasic,
- Abstract summary: We propose a novel message-passing decoding approach that leverages the degeneracy of quantum low-density parity-check codes.
Our focus is on two-block Calderbank-Shor-Steane (CSS) codes, which are composed of symmetric stabilizers.
- Score: 3.6048794343841766
- License:
- Abstract: In this paper, we propose a novel message-passing decoding approach that leverages the degeneracy of quantum low-density parity-check codes to enhance decoding performance, eliminating the need for serial scheduling or post-processing. Our focus is on two-block Calderbank-Shor-Steane (CSS) codes, which are composed of symmetric stabilizers that hinder the performance of conventional iterative decoders with uniform update rules. Specifically, our analysis shows that, under the isolation assumption, the min-sum decoder fails to converge when constant-weight errors are applied to symmetric stabilizers, as variable-to-check messages oscillate in every iteration. To address this, we introduce a decoding technique that exploits this oscillatory property by applying distinct update rules: variable nodes in one block utilize messages from previous iterations, while those in the other block are updated conventionally. Logical error-rate results demonstrate that the proposed decoder significantly outperforms the normalized min-sum decoder and achieves competitive performance with belief propagation enhanced by order-zero ordered statistics decoding, all while maintaining linear complexity in the code's block length.
Related papers
- Hierarchical generation and design of quantum codes for resource-efficient loss-tolerant quantum communications [0.0]
We develop novel protocols for generating loss-tolerant quantum codes.
These codes are central for safeguarding information against qubit losses.
We show how to achieve this with a single quantum emitter equipped with a static feedback mechanism.
arXiv Detail & Related papers (2025-01-30T19:00:06Z) - Threshold Selection for Iterative Decoding of $(v,w)$-regular Binary Codes [84.0257274213152]
Iterative bit flipping decoders are an efficient choice for sparse $(v,w)$-regular codes.
We propose concrete criteria for threshold determination, backed by a closed form model.
arXiv Detail & Related papers (2025-01-23T17:38:22Z) - Breadth-first graph traversal union-find decoder [0.0]
We develop variants of the union-find decoder that simplify its implementation and provide potential decoding speed advantages.
We show how these methods can be adapted to decode non-topological quantum low-density-parity-check codes.
arXiv Detail & Related papers (2024-07-22T18:54:45Z) - Localized statistics decoding: A parallel decoding algorithm for quantum low-density parity-check codes [3.001631679133604]
We introduce localized statistics decoding for arbitrary quantum low-density parity-check codes.
Our decoder is more amenable to implementation on specialized hardware, positioning it as a promising candidate for decoding real-time syndromes from experiments.
arXiv Detail & Related papers (2024-06-26T18:00:09Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - Quick Dense Retrievers Consume KALE: Post Training Kullback Leibler
Alignment of Embeddings for Asymmetrical dual encoders [89.29256833403169]
We introduce Kullback Leibler Alignment of Embeddings (KALE), an efficient and accurate method for increasing the inference efficiency of dense retrieval methods.
KALE extends traditional Knowledge Distillation after bi-encoder training, allowing for effective query encoder compression without full retraining or index generation.
Using KALE and asymmetric training, we can generate models which exceed the performance of DistilBERT despite having 3x faster inference.
arXiv Detail & Related papers (2023-03-31T15:44:13Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Optimizing Stabilizer Parities for Improved Logical Qubit Memories [0.8431877864777444]
We study variants of Shor's code that are adept at handling single-axis correlated idling errors.
Even-distance versions of our Shor code variants are decoherence-free subspaces and fully robust to identical and independent coherent idling noise.
arXiv Detail & Related papers (2021-05-11T14:20:15Z) - On Sparsifying Encoder Outputs in Sequence-to-Sequence Models [90.58793284654692]
We take Transformer as the testbed and introduce a layer of gates in-between the encoder and the decoder.
The gates are regularized using the expected value of the sparsity-inducing L0penalty.
We investigate the effects of this sparsification on two machine translation and two summarization tasks.
arXiv Detail & Related papers (2020-04-24T16:57:52Z) - Pruning Neural Belief Propagation Decoders [77.237958592189]
We introduce a method to tailor an overcomplete parity-check matrix to (neural) BP decoding using machine learning.
We achieve performance within 0.27 dB and 1.5 dB of the ML performance while reducing the complexity of the decoder.
arXiv Detail & Related papers (2020-01-21T12:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.