論文の概要: Enhanced Quantile Regression with Spiking Neural Networks for Long-Term System Health Prognostics
- arxiv url: http://arxiv.org/abs/2501.05087v1
- Date: Thu, 09 Jan 2025 09:11:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:58:12.973422
- Title: Enhanced Quantile Regression with Spiking Neural Networks for Long-Term System Health Prognostics
- Title(参考訳): スパイクニューラルネットワークを用いた長期健康診断のための量子回帰の強化
- Authors: David J Poland,
- Abstract要約: 本稿では,拡張量子回帰ニューラルネットワーク(EQRNN)を中心に,新しい予測保守フレームワークを提案する。
先進的なニューラルネットワークを組み合わせたハイブリッドアプローチによる早期障害検出の課題に対処する。
計算効率を維持しながら複雑なマルチモーダルセンサーデータを処理する上でのこのフレームワークの有効性は、産業用4.0の製造環境への適用性を検証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a novel predictive maintenance framework centered on Enhanced Quantile Regression Neural Networks EQRNNs, for anticipating system failures in industrial robotics. We address the challenge of early failure detection through a hybrid approach that combines advanced neural architectures. The system leverages dual computational stages: first implementing an EQRNN optimized for processing multi-sensor data streams including vibration, thermal, and power signatures, followed by an integrated Spiking Neural Network SNN, layer that enables microsecond-level response times. This architecture achieves notable accuracy rates of 92.3\% in component failure prediction with a 90-hour advance warning window. Field testing conducted on an industrial scale with 50 robotic systems demonstrates significant operational improvements, yielding a 94\% decrease in unexpected system failures and 76\% reduction in maintenance-related downtimes. The framework's effectiveness in processing complex, multi-modal sensor data while maintaining computational efficiency validates its applicability for Industry 4.0 manufacturing environments.
- Abstract(参考訳): 本稿では,産業ロボティクスにおけるシステム障害の予測を目的とした,拡張量子回帰ニューラルネットワークEQRNNを中心にした新しい予測保守フレームワークを提案する。
先進的なニューラルネットワークを組み合わせたハイブリッドアプローチによる早期障害検出の課題に対処する。
まず、振動、熱、パワーシグネチャを含むマルチセンサーデータストリームを処理するために最適化されたEQRNNを実装し、続いてマイクロ秒レベルの応答時間を可能にするSpiking Neural Network SNNを統合する。
このアーキテクチャは、90時間の事前警告ウィンドウを持つコンポーネント故障予測において、92.3\%の顕著な精度を達成する。
産業規模での50のロボットシステムによるフィールドテストは、予期せぬシステム障害の94倍、保守関連のダウンタイムの76倍の減少をもたらす、大きな運用上の改善を示す。
計算効率を維持しながら複雑なマルチモーダルセンサーデータを処理する上でのこのフレームワークの有効性は、産業用4.0の製造環境への適用性を検証する。
関連論文リスト
- AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence [65.29835430845893]
本稿では,AI-in-the-loopジョイントセンシングと通信によるエッジインテリジェンス向上のためのフレームワークを提案する。
私たちの研究の重要な貢献は、バリデーション損失とシステムのチューニング可能なパラメータとの間に明確な関係を確立することです。
提案手法は, 通信エネルギー消費を最大77%削減し, 試料数で測定した検知コストを最大52%削減する。
論文 参考訳(メタデータ) (2025-02-14T14:56:58Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Industrial Machines Health Prognosis using a Transformer-based Framework [0.0]
本稿では、Transformer Quantile Regression Neural Networks(TQRNN)を紹介する。
TQRNNは、製造コンテキストにおけるリアルタイムマシン障害予測のための、新しいデータ駆動ソリューションである。
その結果,機械故障の予測に1時間リード時間を用い,精度が70.84%となるモデルの有効性が示された。
論文 参考訳(メタデータ) (2024-11-05T18:47:05Z) - Active Dendrites Enable Efficient Continual Learning in Time-To-First-Spike Neural Networks [1.7333836118546833]
活性デンドライトで強化された新しいスパイキングニューラルネットワークモデルを提案する。
我々のモデルは、時間的に符号化されたSNNにおいて破滅的な忘れを効果的に軽減することができる。
エッジデバイスにおける現実的なデプロイメントを実現するための,新たなディジタルハードウェアアーキテクチャを提供する。
論文 参考訳(メタデータ) (2024-04-30T10:11:03Z) - Linear Combination of Exponential Moving Averages for Wireless Channel
Prediction [2.34863357088666]
本研究では,指数移動平均(EMA)に基づく予測モデルについて検討した。
EMA線形結合(ELC)と呼ばれる新しいモデルを導入し、説明し、実験的に評価した。
論文 参考訳(メタデータ) (2023-12-13T07:44:05Z) - CorrectNet: Robustness Enhancement of Analog In-Memory Computing for
Neural Networks by Error Suppression and Compensation [4.570841222958966]
本稿では,ニューラルネットワークの変動と雑音下での堅牢性を高める枠組みを提案する。
ニューラルネットワークの予測精度は、変動とノイズの下で1.69%以下から回復可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T19:13:33Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - Seizure Detection and Prediction by Parallel Memristive Convolutional
Neural Networks [2.0738462952016232]
本稿では,低レイテンシ並列畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
本ネットワークは,てんかん発作検出では99.84%,てんかん発作予測では97.54%のクロスバリデーション精度を達成している。
CNNは22nm FDSOI CMOSプロセスで31.255mm$2$の面積を占有しながら約2.791Wの電力を消費すると推定されている。
論文 参考訳(メタデータ) (2022-06-20T18:16:35Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
TDNN(State-of-the-the-art Factored Time delay Neural Network)の2種類のハイパーパラメータを自動的に学習するために、さまざまなニューラルネットワークサーチ(NAS)技術が使用されている。
DARTSメソッドはアーキテクチャ選択とLF-MMI(格子のないMMI)TDNNトレーニングを統合する。
300時間のSwitchboardコーパスで行われた実験では、自動構成システムはベースラインLF-MMI TDNNシステムより一貫して優れていることが示唆された。
論文 参考訳(メタデータ) (2020-07-17T08:32:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。