論文の概要: Learning In-Distribution Representations for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2501.05130v1
- Date: Thu, 09 Jan 2025 10:33:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 17:34:41.46804
- Title: Learning In-Distribution Representations for Anomaly Detection
- Title(参考訳): 異常検出のための分布内表現の学習
- Authors: William T. Lunardi, Abdulrahman Banabila, Dania Herzalla, Martin L. Andreoni,
- Abstract要約: Focused In-distriion Representation Modeling (FIRM) は、異常検出に特化して設計された対照的な学習目的である。
FIRMは、表現空間を積極的に形作る方法として、合成外接辞をプリテキストタスクに組み込む。
FIRMが標準ベンチマークの他のコントラスト手法を上回ることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection involves identifying data patterns that deviate from the anticipated norm. Traditional methods struggle in high-dimensional spaces due to the curse of dimensionality. In recent years, self-supervised learning, particularly through contrastive objectives, has driven advances in anomaly detection. However, vanilla contrastive learning struggles to align with the unique demands of anomaly detection, as it lacks a pretext task tailored to the homogeneous nature of In-Distribution (ID) data and the diversity of Out-of-Distribution (OOD) anomalies. Methods that attempt to address these challenges, such as introducing hard negatives through synthetic outliers, Outlier Exposure (OE), and supervised objectives, often rely on pretext tasks that fail to balance compact clustering of ID samples with sufficient separation from OOD data. In this work, we propose Focused In-distribution Representation Modeling (FIRM), a contrastive learning objective specifically designed for anomaly detection. Unlike existing approaches, FIRM incorporates synthetic outliers into its pretext task in a way that actively shapes the representation space, promoting compact clustering of ID samples while enforcing strong separation from outliers. This formulation addresses the challenges of class collision, enhancing both the compactness of ID representations and the discriminative power of the learned feature space. We show that FIRM surpasses other contrastive methods in standard benchmarks, significantly enhancing anomaly detection compared to both traditional and supervised contrastive learning objectives. Our ablation studies confirm that FIRM consistently improves the quality of representations and shows robustness across a range of scoring methods. The code is available at: https://github.com/willtl/firm.
- Abstract(参考訳): 異常検出には、予想される基準から逸脱するデータパターンを特定することが含まれる。
伝統的な手法は次元の呪いのために高次元空間で苦労する。
近年, 自己指導型学習は, 特に対照的な目的を通じて, 異常検出の進歩を推し進めている。
しかしながら、バニラの対照的な学習は、異常検出のユニークな要求に合わせるのに苦労している。これは、ID(In-Distribution)データの同質性や、アウト・オブ・ディストリビューション(OOD)異常の多様性に合わせた、プレテキストタスクが欠けているためである。
これらの課題に対処しようとする手法としては、合成アウトリージ、OE(Outlier Exposure)、監視対象などがあり、多くの場合、OODデータから十分に分離されたIDサンプルのコンパクトクラスタリングのバランスが取れないようなプリテキストタスクに依存している。
本研究では,異常検出に特化して設計された対照的な学習目的であるFocused In-distriion Representation Modeling (FIRM)を提案する。
既存のアプローチとは異なり、FIRMは、表現空間を積極的に形成し、外部からの強い分離を強制しながら、IDサンプルのコンパクトなクラスタリングを促進する方法として、合成アウトレイアをプリテキストタスクに組み込んでいる。
この定式化はクラス衝突の課題に対処し、ID表現のコンパクトさと学習された特徴空間の識別力の両方を高める。
FIRMは標準ベンチマークにおける他のコントラスト手法を超越し,従来のコントラスト学習目標と教師あり学習目標の両方と比較して,異常検出を著しく向上することを示す。
我々のアブレーション研究は、FIRMが表現の質を一貫して改善し、様々なスコアリング手法で堅牢性を示すことを確認した。
コードは、https://github.com/willtl/firm.comから入手できる。
関連論文リスト
- Learning from Similarity-Confidence and Confidence-Difference [0.24578723416255752]
複数の視点から補完的な弱監督信号を利用する新しい弱監視学習(WSL)フレームワークを提案する。
具体的には,2種類の弱いラベルを統合する手法であるSconfConfDiff Classificationを紹介する。
両推定器が推定誤差境界に対して最適収束率を達成することを証明した。
論文 参考訳(メタデータ) (2025-08-07T07:42:59Z) - Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
異常検出は産業アプリケーションの品質管理において重要な役割を担っている。
既存の方法は、一般化可能なモデルをトレーニングすることで、ドメインシフトに対処しようとする。
提案手法は,最先端の異常検出法や領域適応法と比較して,優れた結果を示す。
論文 参考訳(メタデータ) (2025-03-19T05:25:52Z) - Out-of-Distribution Detection with Prototypical Outlier Proxy [17.130831264648997]
よく訓練されたディープモデルは、目に見えないテストデータに対して過剰な自信を持つ傾向があります。
近年の研究では、実際のまたは合成された外れ値を利用して問題を緩和しようとしている。
POP(Prototypeal Outlier Proxy)を提案する。
論文 参考訳(メタデータ) (2024-12-22T06:32:20Z) - Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
本稿では,新たな異常検出手法であるMeLIADを提案する。
MeLIADはメートル法学習に基づいており、真の異常の事前分布仮定に頼ることなく、設計による解釈可能性を達成する。
解釈可能性の定量的かつ定性的な評価を含む5つの公開ベンチマークデータセットの実験は、MeLIADが異常検出とローカライゼーション性能の改善を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-20T16:01:43Z) - Enhancing Anomaly Detection via Generating Diversified and Hard-to-distinguish Synthetic Anomalies [7.021105583098609]
近年のアプローチでは、通常のサンプルから合成異常を生成するためにドメイン固有の変換や摂動を活用することに重点を置いている。
そこで本研究では,条件付き摂動器と判別器を併用したドメインに依存しない新しい手法を提案する。
我々は,最先端のベンチマークよりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2024-09-16T08:15:23Z) - Regularization for Adversarial Robust Learning [18.46110328123008]
我々は,$phi$-divergence正規化を分散ロバストなリスク関数に組み込む,対角訓練のための新しい手法を開発した。
この正規化は、元の定式化と比較して計算の顕著な改善をもたらす。
本研究では,教師付き学習,強化学習,文脈学習において提案手法の有効性を検証し,様々な攻撃に対して最先端の性能を示す。
論文 参考訳(メタデータ) (2024-08-19T03:15:41Z) - Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
RCPMOD(Regularized Contrastive partial Multi-view Outlier Detection)と呼ばれる新しい手法を提案する。
このフレームワークでは、コントラスト学習を利用して、ビュー一貫性のある情報を学び、一貫性の度合いでアウトレイラを識別する。
4つのベンチマークデータセットによる実験結果から,提案手法が最先端の競合より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-02T14:34:27Z) - Towards a Unified Framework of Clustering-based Anomaly Detection [18.30208347233284]
非教師付き異常検出(UAD)は、ラベル付き例なしでデータ内の異常パターンを識別する上で重要な役割を果たす。
本稿では, 表現学習, クラスタリング, 異常検出の理論的関係を確立するために, 異常検出のための新しい確率混合モデルを提案する。
我々は,表現学習とクラスタリングの併用力を効果的に活用する,改良された異常スコアを考案した。
論文 参考訳(メタデータ) (2024-06-01T14:30:12Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
セマンティックな一貫性を維持しつつ,サンプル単位のロジットアライメントを実現するコントラッシブな知識蒸留フレームワークを提案する。
提案手法は,教師と教師の対照的アライメントを通じて「暗黒知識」をサンプルレベルで伝達する。
CIFAR-100、ImageNet-1K、MS COCOデータセットを含む3つのベンチマークデータセットの総合的な実験を行う。
論文 参考訳(メタデータ) (2024-04-22T11:52:40Z) - Exploiting Inter-sample and Inter-feature Relations in Dataset Distillation [25.552810713735873]
クラス集中化制約と共分散マッチング制約を導入する。
CIFAR10では最大6.6%、SVHNでは2.9%、CIFAR100では2.5%、TinyImageNetでは2.5%となる。
本手法は,4つのアーキテクチャにおいて最大1.7%の性能低下を伴って,クロスアーキテクチャ環境でのロバストな性能を維持している。
論文 参考訳(メタデータ) (2024-03-31T05:07:06Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
異常検出(AD)は、正規性の学習モデルに適合しない観察を識別する重要なタスクである。
本稿では, 入力空間における説明不能な観測として, 説明可能性を用いた新しいAD手法を提案する。
当社のアプローチでは,複数のベンチマークにまたがる新たな最先端性を確立し,さまざまな異常な型を扱う。
論文 参考訳(メタデータ) (2023-10-01T21:24:05Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
ほとんどの深層異常検出モデルは、データセットから正規性を学ぶことに基づいている。
実際、正規性仮定は実データ分布の性質によってしばしば破られる。
このギャップを減らし、より優れた正規性表現を実現するための学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T02:36:19Z) - Unilaterally Aggregated Contrastive Learning with Hierarchical
Augmentation for Anomaly Detection [64.50126371767476]
階層的拡張(UniCon-HA)を用いた一方的集約型コントラスト学習を提案する。
我々は、教師付きおよび教師なしの対照的な損失を通じて、インレーヤの濃度と仮想外れ値の分散を明示的に奨励する。
本手法は,ラベルなし1クラス,ラベルなしマルチクラス,ラベル付きマルチクラスを含む3つのAD設定で評価される。
論文 参考訳(メタデータ) (2023-08-20T04:01:50Z) - Joint Salient Object Detection and Camouflaged Object Detection via
Uncertainty-aware Learning [47.253370009231645]
本稿では,SOD と Camouflaged Object Detection (COD) の矛盾する情報を探るため,不確実性を考慮した学習パイプラインを提案する。
我々の解決策は、最先端の性能と情報的不確実性の推定の両方につながる。
論文 参考訳(メタデータ) (2023-07-10T15:49:37Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
本稿では, クラスタ間マッチングによるモダリティギャップを低減するための, クラスタマッチングに基づく新たな学習フレームワークを提案する。
このような監視信号の下では、クラスタレベルで特徴を協調的に整列させるために、モダリティ・特定・モダリティ・非依存(MSMA)コントラスト学習フレームワークが提案されている。
公開SYSU-MM01とRegDBデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-22T03:27:46Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Robust Representation via Dynamic Feature Aggregation [44.927408735490005]
ディープ畳み込みニューラルネットワーク(CNN)ベースのモデルは、敵の攻撃に対して脆弱である。
本稿では,新しい正規化により埋め込み空間を圧縮する動的特徴集約法を提案する。
CIFAR-10における攻撃法の平均精度は56.91%である。
論文 参考訳(メタデータ) (2022-05-16T06:22:15Z) - Dual Contrastive Learning for General Face Forgery Detection [64.41970626226221]
本稿では,正と負のペアデータを構成するDCL (Dual Contrastive Learning) という新しい顔偽造検出フレームワークを提案する。
本研究は, 事例内コントラスト学習(Intra-ICL)において, 偽造顔における局所的内容の不整合に焦点をあてる。
論文 参考訳(メタデータ) (2021-12-27T05:44:40Z) - Guardian of the Ensembles: Introducing Pairwise Adversarially Robust Loss for Resisting Adversarial Attacks in DNN Ensembles [11.058367494534123]
攻撃は移動可能性に依存する。
最近のアンサンブル法は、AEがアンサンブル内の複数の分類器を誤解させる可能性が低いことを示している。
本稿では,Pairwise Adversariversaally Robust Loss (PARL) を用いた新たなアンサンブルトレーニングを提案する。
論文 参考訳(メタデータ) (2021-12-09T14:26:13Z) - Contrastive Predictive Coding for Anomaly Detection [0.0]
対照的予測符号化モデル (arXiv:1807.03748) は異常検出とセグメンテーションに使用される。
パッチワイドのコントラスト損失を直接異常スコアと解釈できることを示す。
ModelはMVTec-ADデータセット上の異常検出とセグメンテーションの両方に対して有望な結果を達成する。
論文 参考訳(メタデータ) (2021-07-16T11:04:35Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
我々は,クラスタリング性能に重要な識別表現を学習するために,Neighborhood Contrastive Learningという新しいフレームワークを構築した。
これらの2つの成分がクラスタリング性能に大きく寄与し、我々のモデルが最先端の手法よりも大きなマージンで優れていることを実験的に実証した。
論文 参考訳(メタデータ) (2021-06-20T17:34:55Z) - Channel DropBlock: An Improved Regularization Method for Fine-Grained
Visual Classification [58.07257910065007]
既存のアプローチは主に、識別的部分を見つけるための注意機構や、高度にパラメータ化された特徴を弱教師付きで抽出する特徴符号化アプローチを導入することでこの問題に対処している。
本研究では,CDB(Channel DropBlock)と呼ばれる軽量で効果的な正規化手法を提案する。
論文 参考訳(メタデータ) (2021-06-07T09:03:02Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Semi-supervised Contrastive Learning with Similarity Co-calibration [72.38187308270135]
SsCL(Semi-supervised Contrastive Learning)と呼ばれる新しいトレーニング戦略を提案する。
ssclは、自己教師付き学習におけるよく知られたコントラスト損失と、半教師付き学習におけるクロスエントロピー損失を組み合わせる。
SsCLはより差別的な表現を生じさせ,ショット学習に有益であることを示す。
論文 参考訳(メタデータ) (2021-05-16T09:13:56Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
既存のコントラスト学習法は、非常に低い学習効率に苦しむ。
アンダークラスタリングとオーバークラスタリングの問題は、学習効率の大きな障害である。
中央三重項損失を用いた新しい自己監督学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-18T07:47:10Z) - Squared $\ell_2$ Norm as Consistency Loss for Leveraging Augmented Data
to Learn Robust and Invariant Representations [76.85274970052762]
元のサンプルと拡張されたサンプルの埋め込み/表現の距離を規則化することは、ニューラルネットワークの堅牢性を改善するための一般的なテクニックである。
本稿では、これらの様々な正規化選択について検討し、埋め込みの正規化方法の理解を深める。
私たちが特定したジェネリックアプローチ(squared $ell$ regularized augmentation)は、それぞれ1つのタスクのために特別に設計されたいくつかの手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-25T22:40:09Z) - Deep Robust Clustering by Contrastive Learning [31.161207608881472]
本稿では,非競合データを用いたクラスタリング学習のために,Deep Robust Clustering (DRC)を提案する。
DRCは、セマンティッククラスタリングの割り当てと表現機能の両方の観点から、ディープクラスタリングを考察している。
広く採用されている6つのディープクラスタリングベンチマークの実験は、安定性と精度の両方においてDRCの優位性を示している。
論文 参考訳(メタデータ) (2020-08-07T08:05:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。