論文の概要: De-centering the (Traditional) User: Multistakeholder Evaluation of Recommender Systems
- arxiv url: http://arxiv.org/abs/2501.05170v1
- Date: Thu, 09 Jan 2025 11:44:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:38.359685
- Title: De-centering the (Traditional) User: Multistakeholder Evaluation of Recommender Systems
- Title(参考訳): トラディショナルな)ユーザ中心化:マルチステークホルダーによるレコメンダシステムの評価
- Authors: Robin Burke, Gediminas Adomavicius, Toine Bogers, Tommaso Di Noia, Dominik Kowald, Julia Neidhardt, Özlem Özgöbek, Maria Soledad Pera, Nava Tintarev, Jürgen Ziegler,
- Abstract要約: マルチステークホルダー推薦システムの評価の複雑さに焦点をあてる。
理論的原理から実践的実装への移行について論じる。
我々は、これらの複雑で領域に依存した評価の問題について、研究者や実践者にどのように考えるかについてのガイダンスを提供することを目指している。
- 参考スコア(独自算出の注目度): 10.731079374109596
- License:
- Abstract: Multistakeholder recommender systems are those that account for the impacts and preferences of multiple groups of individuals, not just the end users receiving recommendations. Due to their complexity, evaluating these systems cannot be restricted to the overall utility of a single stakeholder, as is often the case of more mainstream recommender system applications. In this article, we focus our discussion on the intricacies of the evaluation of multistakeholder recommender systems. We bring attention to the different aspects involved in the evaluation of multistakeholder recommender systems - from the range of stakeholders involved (including but not limited to producers and consumers) to the values and specific goals of each relevant stakeholder. Additionally, we discuss how to move from theoretical principles to practical implementation, providing specific use case examples. Finally, we outline open research directions for the RecSys community to explore. We aim to provide guidance to researchers and practitioners about how to think about these complex and domain-dependent issues of evaluation in the course of designing, developing, and researching applications with multistakeholder aspects.
- Abstract(参考訳): マルチテイクホルダー・リコメンダ・システムは、エンドユーザーがレコメンデーションを受けるだけでなく、複数の個人グループの影響と嗜好を考慮に入れているシステムである。
その複雑さのため、これらのシステムの評価は、より主流のレコメンデーターシステムアプリケーションの場合のように、単一のステークホルダーの全体的なユーティリティに制限されない。
本稿では,マルチテイクホルダレコメンデータシステムの評価の複雑さに焦点をあてる。
我々は、利害関係者(生産者や消費者に限らず)の範囲から、各利害関係者の価値や具体的な目標まで、マルチステークホルダー推薦システムの評価に関わるさまざまな側面に注意を向ける。
さらに、理論的原則から実践的実装への移行について論じ、特定のユースケース事例を提供する。
最後に、RecSysコミュニティが探求すべきオープンな研究の方向性について概説する。
我々は,マルチステークホルダーの側面を持つアプリケーションを設計,開発,研究する過程で,これらの複雑で領域に依存した評価の問題をどのように考えるか,研究者や実践者にガイダンスを提供することを目的としている。
関連論文リスト
- Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
レビューベースのレコメンデータシステムは、この分野において重要なサブフィールドとして現れている。
本稿では,これらのシステムを分類し,その特徴,有効性,限界を解析し,最先端の手法を要約する。
本稿では,マルチモーダルデータの統合,複数基準評価情報の統合,倫理的考察など,今後の研究の方向性を提案する。
論文 参考訳(メタデータ) (2024-05-09T05:45:18Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
アドホック検索では、評価は暗黙のフィードバックを含むユーザーの行動に大きく依存する。
アノテータの会話知覚におけるターン評価におけるユーザフィードバックの役割はほとんど研究されていない。
本稿では,タスク指向対話システム(TDS)の評価が,ターンのフォローアップ発話を通じて提供されるユーザフィードバック,明示的あるいは暗黙的な評価にどのように影響するかに注目した。
論文 参考訳(メタデータ) (2024-04-19T16:45:50Z) - Concept -- An Evaluation Protocol on Conversational Recommender Systems with System-centric and User-centric Factors [68.68418801681965]
本稿では,システムとユーザ中心の要素を統合した新しい包括的評価プロトコルであるConceptを提案する。
まず、現在のCRSモデルの長所と短所を概観する。
第二に、「全能」なChatGPTにおける低ユーザビリティの問題を特定し、CRSを評価するための包括的なリファレンスガイドを提供する。
論文 参考訳(メタデータ) (2024-04-04T08:56:48Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
本稿は,近年の地域におけるフェアネスの概念と概念について概観する。
この分野での研究が現在どのように行われているのかを概観する。
全体として、最近の研究成果の分析は、ある研究のギャップを示している。
論文 参考訳(メタデータ) (2022-05-23T08:34:25Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
公正を意識した推薦システムは、異なるユーザーグループを同様に扱うことを目的としている。
本稿では,ユーザ中心の公平度を再評価するフレームワークを提案する。
我々は、ユーザ(NDCGなど)とアイテム(新規性、アイテムフェアネスなど)の両方から、フレームワークの再ランク付けによる最終的なレコメンデーションを評価する。
論文 参考訳(メタデータ) (2022-05-17T12:36:30Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
我々は、価値間の近さと緊張を可視化する価値に基づくアセスメントフレームワークを開発する。
我々は、幅広い利害関係者に評価と検討のプロセスを開放しつつ、それらの運用方法に関するガイドラインを提示する。
論文 参考訳(メタデータ) (2022-05-09T19:28:32Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systemsでは、利用者の期待にタイムリーかつ関連性がありながら、コミュニティ内のトレンドアイテムを識別することができる。
より優れた品質のレコメンデーションを達成するために、ディープラーニングの手法が提案されている。
研究者たちは、最も効果的なレコメンデーションを提供するために、標準レコメンデーションシステムの能力を拡大しようと試みている。
論文 参考訳(メタデータ) (2022-05-03T22:13:33Z) - Long-term Dynamics of Fairness Intervention in Connection Recommender
Systems [5.048563042541915]
本稿では,Webスケールのソーシャルネットワークが採用するシステムにパターン化されたコネクションレコメンデータシステムについて検討する。
全体としては公平に思われるが、共通露出とユーティリティパリティの介入は、長期的なバイアスの増幅を緩和することができない。
論文 参考訳(メタデータ) (2022-03-30T16:27:48Z) - Measuring "Why" in Recommender Systems: a Comprehensive Survey on the
Evaluation of Explainable Recommendation [87.82664566721917]
この調査は、IJCAI、AAAI、TheWebConf、Recsys、UMAP、IUIといったトップレベルのカンファレンスから100以上の論文に基づいています。
論文 参考訳(メタデータ) (2022-02-14T02:58:55Z) - A Comprehensive Overview of Recommender System and Sentiment Analysis [1.370633147306388]
本稿では,レコメンデーションシステムと感情分析の活用を目指す研究者を支援するために,包括的概要を提供する。
これには、フェーズ、アプローチ、レコメンダシステムで使用されるパフォーマンスメトリクスなど、レコメンダシステムの概念の背景が含まれている。
次に、感情分析の概念について議論し、レベル、アプローチを含む感情分析の要点を強調し、アスペクトベースの感情分析に焦点を当てる。
論文 参考訳(メタデータ) (2021-09-18T01:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。