論文の概要: Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes
- arxiv url: http://arxiv.org/abs/2501.05226v2
- Date: Mon, 13 Jan 2025 15:30:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:27:26.409535
- Title: Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes
- Title(参考訳): 3次元ボリュームの単一視点再構成のための光輸送対応拡散後部サンプリング
- Authors: Ludwic Leonard, Nils Thuerey, Ruediger Westermann,
- Abstract要約: 本稿では,雲など複数の光散乱効果が一様であるフィールドの単一ビュー再構成手法を提案する。
我々は、新しいベンチマークデータセットに基づいて訓練された無条件拡散モデルを用いて、体積場の未知分布をモデル化する。
物理的に基づく微分可能な体積は、潜在空間における光輸送に関して体積勾配を与えるために用いられる。
- 参考スコア(独自算出の注目度): 18.076285588021868
- License:
- Abstract: We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
- Abstract(参考訳): 本稿では,雲など複数の光散乱効果が一様である体積場の単一ビュー再構成手法を提案する。
本研究は,1000個の合成擬似体積密度場からなる新しいベンチマークデータセットを用いて学習した非条件拡散モデルを用いて,体積場の未知分布をモデル化する。
神経拡散モデルは、新しい拡散に親しみやすい単平面表現の潜在符号に基づいて訓練される。
生成モデルは、異なる再構成タスクに調整されたパラメトリック拡散後サンプリング技術を組み込むために使用される。
物理ベースで微分可能なボリュームレンダラーを用いて、潜伏空間における光輸送に関する勾配を提供する。
これは古典的なNeRFアプローチとは対照的であり、観測データとの整合性が向上する。
様々な実験を通じて,従来は達成不可能な品質であった体積雲の単一ビュー再構成を実演した。
関連論文リスト
- Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Reference-Free Isotropic 3D EM Reconstruction using Diffusion Models [8.590026259176806]
本稿では、参照データや劣化過程に関する事前知識の制限を克服する拡散モデルに基づくフレームワークを提案する。
提案手法では, 2次元拡散モデルを用いて連続的に3次元ボリュームを再構成し, 高精度なサンプルデータに適している。
論文 参考訳(メタデータ) (2023-08-03T07:57:02Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
我々は,限られた入力画像のみを用いて,スパースビュー再構成を改善するために,Deceptive-NeRF/3DGSを導入した。
具体的には,少数視点再構成によるノイズ画像から高品質な擬似観測へ変換する,偽拡散モデルを提案する。
本システムでは,拡散生成擬似観測をトレーニング画像集合に徐々に組み込んで,スパース入力観測を5倍から10倍に高めている。
論文 参考訳(メタデータ) (2023-05-24T14:00:32Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D対応画像合成は、シーン生成や画像からの新規ビュー合成など、様々なタスクを含む。
本稿では,様々な物体の多視点画像から,ニューラルラディアンス場(NeRF)の一般化可能な事前学習を行うために,表現拡散モデルを用いた統一的アプローチであるSSDNeRFを提案する。
論文 参考訳(メタデータ) (2023-04-13T17:59:01Z) - Ensemble flow reconstruction in the atmospheric boundary layer from
spatially limited measurements through latent diffusion models [0.32955181898067526]
機械学習技術は、従来、標準的な流体力学問題において、観測されていない流れ領域を再構築してきた。
これらの技術は3次元大気境界層ではまだ実証されていない。
論文 参考訳(メタデータ) (2023-03-01T21:55:10Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
拡散モデルは、前方拡散段階と逆拡散段階の2つの段階に基づく深層生成モデルである。
拡散モデルは、既知の計算負荷にもかかわらず、生成したサンプルの品質と多様性に対して広く評価されている。
論文 参考訳(メタデータ) (2022-09-10T22:00:30Z) - Non-line-of-Sight Imaging via Neural Transient Fields [52.91826472034646]
NLOS(non-Line-of-Sight)イメージングのためのニューラルモデリングフレームワークを提案する。
最近のNeRF(Neural Radiance Field)アプローチにインスパイアされた我々は、ニューラルネットワーク(NeTF)を表現するために多層パーセプトロン(MLP)を使用する。
共焦点と非共焦点の両方に適用可能な球状ボリュームnetf再構成パイプラインを定式化する。
論文 参考訳(メタデータ) (2021-01-02T05:20:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。