CallNavi: A Study and Challenge on Function Calling Routing and Invocation in Large Language Models
- URL: http://arxiv.org/abs/2501.05255v1
- Date: Thu, 09 Jan 2025 14:12:43 GMT
- Title: CallNavi: A Study and Challenge on Function Calling Routing and Invocation in Large Language Models
- Authors: Yewei Song, Cedric Lothritz, Xunzhu Tang, Saad Ezzini, Jacques Klein, Tegawendé F. Bissyandé, Andrey Boytsov, Ulrick Ble, Anne Goujon,
- Abstract summary: We present a novel dataset designed to assess models on API function selection, parameter generation, and nested API calls.
We also propose an enhanced API routing method that combines general-purpose large language models for API selection with fine-tuned models for parameter generation and some prompt engineering approach.
- Score: 7.443502461016052
- License:
- Abstract: Interacting with a software system via a chatbot can be challenging, especially when the chatbot needs to generate API calls, in the right order and with the right parameters, to communicate with the system. API calling in chatbot systems poses significant challenges, particularly in complex, multi-step tasks requiring accurate API selection and execution. We contribute to this domain in three ways: first, by introducing a novel dataset designed to assess models on API function selection, parameter generation, and nested API calls; second, by benchmarking state-of-the-art language models across varying levels of complexity to evaluate their performance in API function generation and parameter accuracy; and third, by proposing an enhanced API routing method that combines general-purpose large language models for API selection with fine-tuned models for parameter generation and some prompt engineering approach. These approaches lead to substantial improvements in handling complex API tasks, offering practical advancements for real-world API-driven chatbot systems.
Related papers
- Seq2Seq Model-Based Chatbot with LSTM and Attention Mechanism for Enhanced User Interaction [1.937324318931008]
This work proposes a Sequence-to-Sequence (Seq2Seq) model with an encoder-decoder architecture that incorporates attention mechanisms and Long Short-Term Memory (LSTM) cells.
The proposed Seq2Seq model-based robot is trained, validated, and tested on a dataset specifically for the tourism sector in Draa-Tafilalet, Morocco.
arXiv Detail & Related papers (2024-12-27T23:50:54Z) - ExploraCoder: Advancing code generation for multiple unseen APIs via planning and chained exploration [70.26807758443675]
ExploraCoder is a training-free framework that empowers large language models to invoke unseen APIs in code solution.
We show that ExploraCoder significantly improves performance for models lacking prior API knowledge, achieving an absolute increase of 11.24% over niave RAG approaches and 14.07% over pretraining methods in pass@10.
arXiv Detail & Related papers (2024-12-06T19:00:15Z) - A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API suggestion is a critical task in modern software development.
Recent advancements in large code models (LCMs) have shown promise in the API suggestion task.
arXiv Detail & Related papers (2024-09-20T03:12:35Z) - ToolACE: Winning the Points of LLM Function Calling [139.07157814653638]
ToolACE is an automatic agentic pipeline designed to generate accurate, complex, and diverse tool-learning data.
We demonstrate that models trained on our synthesized data, even with only 8B parameters, achieve state-of-the-art performance on the Berkeley Function-Calling Leaderboard.
arXiv Detail & Related papers (2024-09-02T03:19:56Z) - FANTAstic SEquences and Where to Find Them: Faithful and Efficient API Call Generation through State-tracked Constrained Decoding and Reranking [57.53742155914176]
API call generation is the cornerstone of large language models' tool-using ability.
Existing supervised and in-context learning approaches suffer from high training costs, poor data efficiency, and generated API calls that can be unfaithful to the API documentation and the user's request.
We propose an output-side optimization approach called FANTASE to address these limitations.
arXiv Detail & Related papers (2024-07-18T23:44:02Z) - Semantic API Alignment: Linking High-level User Goals to APIs [6.494714497852088]
We present a vision to span multiple steps from requirements engineering to implementation using existing libraries.
This approach, which we call Semantic API Alignment (SEAL), aims to bridge the gap between a user's high-level goals and the specific functions of one or more APIs.
arXiv Detail & Related papers (2024-05-07T11:54:32Z) - Octopus: On-device language model for function calling of software APIs [9.78611123915888]
Large Language Models (LLMs) play a crucial role due to their advanced text processing and generation abilities.
This study introduces a new strategy aimed at harnessing on-device LLMs in invoking software APIs.
arXiv Detail & Related papers (2024-04-02T01:29:28Z) - Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on
Self-Chat Data [101.63682141248069]
Chat models, such as ChatGPT, have shown impressive capabilities and have been rapidly adopted across numerous domains.
We propose a pipeline that can automatically generate a high-quality multi-turn chat corpus by leveraging ChatGPT.
We employ parameter-efficient tuning to enhance LLaMA, an open-source large language model.
arXiv Detail & Related papers (2023-04-03T17:59:09Z) - Natural Language Sentence Generation from API Specifications [5.192671914929481]
We propose a system to generate sentences to train intent recognition models.
The human-in-the-loop interaction will provide further improvement on the system.
arXiv Detail & Related papers (2022-06-01T15:50:14Z) - On the Effectiveness of Pretrained Models for API Learning [8.788509467038743]
Developers frequently use APIs to implement certain functionalities, such as parsing Excel Files, reading and writing text files line by line, etc.
Developers can greatly benefit from automatic API usage sequence generation based on natural language queries for building applications in a faster and cleaner manner.
Existing approaches utilize information retrieval models to search for matching API sequences given a query or use RNN-based encoder-decoder to generate API sequences.
arXiv Detail & Related papers (2022-04-05T20:33:24Z) - Language Models as Few-Shot Learner for Task-Oriented Dialogue Systems [74.8759568242933]
Task-oriented dialogue systems use four connected modules, namely, Natural Language Understanding (NLU), a Dialogue State Tracking (DST), Dialogue Policy (DP) and Natural Language Generation (NLG)
A research challenge is to learn each module with the least amount of samples given the high cost related to the data collection.
We evaluate the priming few-shot ability of language models in the NLU, DP and NLG tasks.
arXiv Detail & Related papers (2020-08-14T08:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.