Molecular Properties from Quantum Krylov Subspace Diagonalization
- URL: http://arxiv.org/abs/2501.05286v1
- Date: Thu, 09 Jan 2025 14:50:01 GMT
- Title: Molecular Properties from Quantum Krylov Subspace Diagonalization
- Authors: Oumarou Oumarou, Pauline J. Ollitrault, Cristian L. Cortes, Maximilian Scheurer, Robert M. Parrish, Christian Gogolin,
- Abstract summary: We show how to obtain relaxed one and two particle reduced density matrices of the Krylov eigenstates.
This is done by leveraging quantum signal processing to prepare Krylov eigenstates, including exited states, in depth linear in $D$.
We validate our approach by computing the nuclear gradient of a small molecule and estimating its variance.
- Score: 0.0
- License:
- Abstract: Quantum Krylov subspace diagonalization is a prominent candidate for early fault tolerant quantum simulation of many-body and molecular systems, but so far the focus has been mainly on computing ground-state energies. We go beyond this by deriving analytical first-order derivatives for quantum Krylov methods and show how to obtain relaxed one and two particle reduced density matrices of the Krylov eigenstates. The direct approach to measuring these matrices requires a number of distinct measurement that scales quadratically with the Krylov dimension $D$. Here, we show how to reduce this scaling to a constant. This is done by leveraging quantum signal processing to prepare Krylov eigenstates, including exited states, in depth linear in $D$. We also compare several measurement schemes for efficiently obtaining the expectation value of an operator with states prepared using quantum signal processing. We validate our approach by computing the nuclear gradient of a small molecule and estimating its variance.
Related papers
- Quantum-Centric Algorithm for Sample-Based Krylov Diagonalization [0.6512657417859998]
We introduce a quantum diagonalization algorithm which combines two key ideas on quantum subspaces.
We prove that our algorithm converges under working assumptions of Krylov quantum diagonalization and sparseness of ground state.
We then show numerical investigations of lattice Hamiltonians, which indicate that our method can outperform existing Krylov quantum diagonalization in presence of shot noise.
arXiv Detail & Related papers (2025-01-16T17:56:19Z) - Quantum-centric computation of molecular excited states with extended sample-based quantum diagonalization [0.0]
The simulation of molecular electronic structure is an important application of quantum devices.
We extend the sample-based quantum diagonalization (SQD) algorithm to determine low-lying molecular excited states.
arXiv Detail & Related papers (2024-11-01T09:33:08Z) - Multi-stage tomography based on eigenanalysis for high-dimensional dense unitary quantum processes [2.5966580648312223]
Quantum Process Tomography (QPT) methods aim at identifying, i.e. estimating, a quantum process.
We consider unitary, possibly dense (i.e. without sparsity constraints) processes, which corresponds to isolated systems.
We first propose two-stage methods and we then extend them to dichotomic methods, whose number of stages increases with the considered state space dimension.
arXiv Detail & Related papers (2024-07-18T14:18:23Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exact and efficient Lanczos method on a quantum computer [0.0]
We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space.
The construction is exact in the sense that the Krylov space is identical to that of the Lanczos method.
arXiv Detail & Related papers (2022-08-01T01:57:23Z) - Efficient Quantum Analytic Nuclear Gradients with Double Factorization [0.0]
We report a Lagrangian-based approach for evaluating relaxed one- and two-particle reduced density matrices from double factorized Hamiltonians.
We demonstrate the accuracy and feasibility of our Lagrangian-based approach to recover all off-diagonal density matrix elements in classically-simulated examples.
arXiv Detail & Related papers (2022-07-26T18:47:48Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.