Search-o1: Agentic Search-Enhanced Large Reasoning Models
- URL: http://arxiv.org/abs/2501.05366v1
- Date: Thu, 09 Jan 2025 16:48:17 GMT
- Title: Search-o1: Agentic Search-Enhanced Large Reasoning Models
- Authors: Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, Zhicheng Dou,
- Abstract summary: Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning.<n>We introduce textbfSearch-o1, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module.
- Score: 24.239220558484373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module for refining retrieved documents. Search-o1 integrates an agentic search workflow into the reasoning process, enabling dynamic retrieval of external knowledge when LRMs encounter uncertain knowledge points. Additionally, due to the verbose nature of retrieved documents, we design a separate Reason-in-Documents module to deeply analyze the retrieved information before injecting it into the reasoning chain, minimizing noise and preserving coherent reasoning flow. Extensive experiments on complex reasoning tasks in science, mathematics, and coding, as well as six open-domain QA benchmarks, demonstrate the strong performance of Search-o1. This approach enhances the trustworthiness and applicability of LRMs in complex reasoning tasks, paving the way for more reliable and versatile intelligent systems. The code is available at \url{https://github.com/sunnynexus/Search-o1}.
Related papers
- WebThinker: Empowering Large Reasoning Models with Deep Research Capability [60.81964498221952]
WebThinker is a deep research agent that empowers large reasoning models to autonomously search the web, navigate web pages, and draft research reports during the reasoning process.
It also employs an textbfAutonomous Think-Search-and-Draft strategy, allowing the model to seamlessly interleave reasoning, information gathering, and report writing in real time.
Our approach enhances LRM reliability and applicability in complex scenarios, paving the way for more capable and versatile deep research systems.
arXiv Detail & Related papers (2025-04-30T16:25:25Z) - ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation [38.64751082999587]
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy.
We propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations.
Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG)
arXiv Detail & Related papers (2025-03-27T17:44:18Z) - ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning [37.183397387416065]
We propose ReSearch, a framework that trains LLMs to Reason with Search via reinforcement learning.
Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking.
Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction.
arXiv Detail & Related papers (2025-03-25T09:00:58Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Agentic Reasoning: Reasoning LLMs with Tools for the Deep Research [7.4327380079414676]
We introduce Agentic Reasoning, a framework that enhances large language model (LLM) reasoning by integrating external tool-using agents.
Our framework introduces the Mind Map agent, which constructs a structured knowledge graph to track logical relationships.
Evaluations on PhD-level scientific reasoning (GPQA) and domain-specific deep research tasks demonstrate that our approach significantly outperforms existing models.
arXiv Detail & Related papers (2025-02-07T04:08:46Z) - KnowRA: Knowledge Retrieval Augmented Method for Document-level Relation Extraction with Comprehensive Reasoning Abilities [15.643871248554355]
Document-level relation extraction (Doc-RE) aims to extract relations between entities across multiple sentences.<n>Most existing Doc-RE methods focus on optimizing single reasoning ability.<n>A knowledge retrieval augmented method, named KnowRA, was proposed to autonomously determine whether to accept external knowledge.
arXiv Detail & Related papers (2024-12-31T17:58:36Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.<n>We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
BRIEF (Bridging Retrieval and Inference through Evidence Fusion) is a lightweight approach that performs query-aware multi-hop reasoning.
Based on our synthetic data built entirely by open-source models, BRIEF generates more concise summaries.
arXiv Detail & Related papers (2024-10-20T04:24:16Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.