The global consensus on the risk management of autonomous driving
- URL: http://arxiv.org/abs/2501.05391v1
- Date: Thu, 09 Jan 2025 17:33:08 GMT
- Title: The global consensus on the risk management of autonomous driving
- Authors: Sebastian Krügel, Matthias Uhl,
- Abstract summary: We show that risk preferences in road traffic are strikingly similar between cultural zones.
The social dilemma of autonomous vehicles detected in deterministic crash scenarios disappears in risk assessments of everyday traffic situations in all countries.
In no country do cyclists receive a risk bonus that goes beyond their higher vulnerability.
- Score: 0.0
- License:
- Abstract: Every maneuver of a vehicle redistributes risks between road users. While human drivers do this intuitively, autonomous vehicles allow and require deliberative algorithmic risk management. But how should traffic risks be distributed among road users? In a global experimental study in eight countries with different cultural backgrounds and almost 11,000 participants, we compared risk distribution preferences. It turns out that risk preferences in road traffic are strikingly similar between the cultural zones. The vast majority of participants in all countries deviates from a guiding principle of minimizing accident probabilities in favor of weighing up the probability and severity of accidents. At the national level, the consideration of accident probability and severity hardly differs between countries. The social dilemma of autonomous vehicles detected in deterministic crash scenarios disappears in risk assessments of everyday traffic situations in all countries. In no country do cyclists receive a risk bonus that goes beyond their higher vulnerability. In sum, our results suggest that a global consensus on the risk ethics of autonomous driving is easier to establish than on the ethics of crashing.
Related papers
- Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
Semi-cooperative behaviors are intrinsic properties of human drivers and should be considered for autonomous driving.
New autonomous planners can consider the social value orientation (SVO) of human drivers to generate socially-compliant trajectories.
We present study of implicit semi-cooperative driving where agents deploy a game-theoretic version of iterative best response.
arXiv Detail & Related papers (2023-04-23T16:01:36Z) - The risk ethics of autonomous vehicles: a continuous trolley problem in
regular road traffic [0.0]
We argue that autonomous vehicles (AVs) distribute risks between road users in regular traffic situations, either explicitly or implicitly.
Using an interactive, graphical representation of different traffic situations, we measured participants' preferences on driving maneuvers of AVs.
Our participants were willing to take risks themselves for the benefit of other road users suggesting that the social dilemma of AVs may lessen in a context of risk.
arXiv Detail & Related papers (2022-05-24T20:49:28Z) - Mathematical Models of Human Drivers Using Artificial Risk Fields [8.074019565026544]
We use the concept of artificial risk fields to predict how human operators control a vehicle in response to upcoming road situations.
We observe that the risk fields are excellent at predicting future trajectory with high prediction accuracy for up to twenty seconds prediction horizons.
arXiv Detail & Related papers (2022-05-24T15:39:01Z) - Multi-Agent Vulnerability Discovery for Autonomous Driving with Hazard
Arbitration Reward [21.627246586543542]
This work proposes a Safety Test framework by finding Av-Responsible Scenarios (STARS) based on multi-agent reinforcement learning.
STARS guides other traffic participants to produce Av-Responsible Scenarios and make the under-test driving policy misbehave.
arXiv Detail & Related papers (2021-12-12T08:58:32Z) - Pedestrian Emergence Estimation and Occlusion-Aware Risk Assessment for
Urban Autonomous Driving [0.0]
We propose a pedestrian emergence estimation and occlusion-aware risk assessment system for urban autonomous driving.
First, the proposed system utilizes available contextual information, such as visible cars and pedestrians, to estimate pedestrian emergence probabilities in occluded regions.
The proposed controller outperformed the baselines in terms of safety and comfort measures.
arXiv Detail & Related papers (2021-07-06T00:07:09Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Addressing Inherent Uncertainty: Risk-Sensitive Behavior Generation for
Automated Driving using Distributional Reinforcement Learning [0.0]
We propose a two-step approach for risk-sensitive behavior generation for self-driving vehicles.
First, we learn an optimal policy in an uncertain environment with Deep Distributional Reinforcement Learning.
During execution, the optimal risk-sensitive action is selected by applying established risk criteria.
arXiv Detail & Related papers (2021-02-05T11:45:12Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.