Neuro-Symbolic AI in 2024: A Systematic Review
- URL: http://arxiv.org/abs/2501.05435v1
- Date: Thu, 09 Jan 2025 18:48:35 GMT
- Title: Neuro-Symbolic AI in 2024: A Systematic Review
- Authors: Brandon C. Colelough, William Regli,
- Abstract summary: The review followed the PRISMA methodology, utilizing databases such as IEEE Explore, Google Scholar, arXiv, ACM, and SpringerLink.
From an initial pool of 1,428 papers, 167 met the inclusion criteria and were analyzed in detail.
The majority of research efforts are concentrated in the areas of learning and inference, logic and reasoning, and knowledge representation.
- Score: 0.29260385019352086
- License:
- Abstract: Background: The field of Artificial Intelligence has undergone cyclical periods of growth and decline, known as AI summers and winters. Currently, we are in the third AI summer, characterized by significant advancements and commercialization, particularly in the integration of Symbolic AI and Sub-Symbolic AI, leading to the emergence of Neuro-Symbolic AI. Methods: The review followed the PRISMA methodology, utilizing databases such as IEEE Explore, Google Scholar, arXiv, ACM, and SpringerLink. The inclusion criteria targeted peer-reviewed papers published between 2020 and 2024. Papers were screened for relevance to Neuro-Symbolic AI, with further inclusion based on the availability of associated codebases to ensure reproducibility. Results: From an initial pool of 1,428 papers, 167 met the inclusion criteria and were analyzed in detail. The majority of research efforts are concentrated in the areas of learning and inference (63%), logic and reasoning (35%), and knowledge representation (44%). Explainability and trustworthiness are less represented (28%), with Meta-Cognition being the least explored area (5%). The review identifies significant interdisciplinary opportunities, particularly in integrating explainability and trustworthiness with other research areas. Conclusion: Neuro-Symbolic AI research has seen rapid growth since 2020, with concentrated efforts in learning and inference. Significant gaps remain in explainability, trustworthiness, and Meta-Cognition. Addressing these gaps through interdisciplinary research will be crucial for advancing the field towards more intelligent, reliable, and context-aware AI systems.
Related papers
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps [3.8214695776749013]
This study conducts a comprehensive bibliometric analysis of the AI ethics literature over the past two decades.
They present seven key AI ethics issues, encompassing the Collingridge dilemma, the AI status debate, challenges associated with AI transparency and explainability, privacy protection complications, considerations of justice and fairness, concerns about algocracy and human enfeeblement, and the issue of superintelligence.
arXiv Detail & Related papers (2024-03-12T21:43:21Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
In 1960 14% of 333 research fields were related to AI, but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
arXiv Detail & Related papers (2023-06-15T14:08:07Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Systematic Mapping Study on the Machine Learning Lifecycle [4.4090257489826845]
The study yields 405 publications published from 2005 to 2020, mapped in 5 different main research topics, and 31 sub-topics.
We observe that only a minority of publications focus on data management and model production problems, and that more studies should address the AI lifecycle from a holistic perspective.
arXiv Detail & Related papers (2021-03-11T11:44:23Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
Concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers.
Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning.
Neural-symbolic computing has been an active area of research seeking to bring together robust learning in neural networks with reasoning and explainability.
arXiv Detail & Related papers (2020-12-10T18:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.