論文の概要: A survey of textual cyber abuse detection using cutting-edge language models and large language models
- arxiv url: http://arxiv.org/abs/2501.05443v1
- Date: Thu, 09 Jan 2025 18:55:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:39.133760
- Title: A survey of textual cyber abuse detection using cutting-edge language models and large language models
- Title(参考訳): 最先端言語モデルと大規模言語モデルを用いたテキストサイバー乱用検出の検討
- Authors: Jose A. Diaz-Garcia, Joao Paulo Carvalho,
- Abstract要約: ソーシャルメディアで広く普及している様々な乱用形態を包括的に分析する。
我々は,言語モデル (LM) や大規模言語モデル (LLM) といった新興技術が,乱用コンテンツの検出と生成を両立させていることに注目した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The success of social media platforms has facilitated the emergence of various forms of online abuse within digital communities. This abuse manifests in multiple ways, including hate speech, cyberbullying, emotional abuse, grooming, and sexting. In this paper, we present a comprehensive analysis of the different forms of abuse prevalent in social media, with a particular focus on how emerging technologies, such as Language Models (LMs) and Large Language Models (LLMs), are reshaping both the detection and generation of abusive content within these networks. We delve into the mechanisms through which social media abuse is perpetuated, exploring the psychological and social impact. Additionally, we examine the dual role of advanced language models-highlighting their potential to enhance automated detection systems for abusive behavior while also acknowledging their capacity to generate harmful content. This paper aims to contribute to the ongoing discourse on online safety and ethics, offering insights into the evolving landscape of cyberabuse and the technological innovations that both mitigate and exacerbate it.
- Abstract(参考訳): ソーシャルメディアプラットフォームの成功は、デジタルコミュニティにおける様々な形のオンライン虐待の出現を助長している。
この虐待は、ヘイトスピーチ、サイバーいじめ、情緒的虐待、グルーミング、セクスティングなど、様々な方法で現れる。
本稿では,ソーシャルメディアで広く普及しているさまざまな乱用形態を包括的に分析し,特に言語モデル (LM) や大規模言語モデル (LLM) といった新興技術が,これらのネットワーク内での乱用コンテンツの検出と生成を両立させていることに着目した。
我々は、ソーシャルメディアの悪用が永続するメカニズムを探求し、心理的および社会的影響を探求する。
さらに, 有害なコンテンツを生成する能力を認めつつ, 乱用行動の自動検出システムを強化する可能性を高めるために, 先進言語モデルが果たす二重の役割についても検討した。
本稿では,オンラインの安全性と倫理に関する議論の継続に寄与することを目的としており,サイバー攻撃の進展と,それを緩和し,さらに悪化させる技術革新の展望を提供する。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - The Unappreciated Role of Intent in Algorithmic Moderation of Social Media Content [2.2618341648062477]
本稿では,コンテンツモデレーションシステムにおける意図の役割について考察する。
本研究は,意識と意図を捉える能力を評価するために,オンライン虐待に対するアート検出モデルとベンチマークトレーニングデータセットの現状をレビューする。
論文 参考訳(メタデータ) (2024-05-17T18:05:13Z) - SoMeLVLM: A Large Vision Language Model for Social Media Processing [78.47310657638567]
ソーシャルメディア処理のための大規模ビジョン言語モデル(SoMeLVLM)を提案する。
SoMeLVLMは、知識と理解、応用、分析、評価、作成を含む5つの重要な機能を備えた認知フレームワークである。
実験により,複数のソーシャルメディアタスクにおいて,SoMeLVLMが最先端のパフォーマンスを達成できることが実証された。
論文 参考訳(メタデータ) (2024-02-20T14:02:45Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
大規模言語モデル(LLM)は、誤った、誤った、あるいは誤解を招くコンテンツを生成する。
LLMは悪意のあるアプリケーションに利用することができる。
これは、ユーザーを欺く可能性があるという点で、社会に重大な課題をもたらす。
論文 参考訳(メタデータ) (2023-10-08T14:55:02Z) - Cyberbullying in Text Content Detection: An Analytical Review [0.0]
オンラインソーシャルネットワークは、自殺、摂食障害、サイバー犯罪、強制行動、不安、抑うつといった生命を脅かす状況へのユーザーの露出を増大させる。
サイバーいじめの問題を解決するため、既存の文献の多くは、要因を特定し、サイバーいじめに関連するテキスト的要因を理解するためのアプローチの開発に重点を置いている。
本稿では,サイバーバブル検出の理解を深めるために,総合的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-03-18T21:23:06Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Fragments of the Past: Curating Peer Support with Perpetrators of
Domestic Violence [88.37416552778178]
我々は,過去フラグメントの設計と展開において,6人の支援労働者と18人の加害者とともに働いた10ヶ月の研究を報告した。
私たちは、暴力から脱却した経験をデジタルで強化された成果物、すなわち「フラグメント」を作ることが、メッセージのモチベーションと仲間間のラッピングをいかに翻訳するかを共有します。
これらの知見は、挑戦的な人口を持つ将来のネットワーク設計の実践的考察の基礎となる。
論文 参考訳(メタデータ) (2021-07-09T22:57:43Z) - The User behind the Abuse: A Position on Ethics and Explainability [25.791014642037585]
ユーザとオンラインコミュニティのモデリングが乱用検知に果たす役割について論じる。
その後、ユーザー情報とコミュニティ情報を取り入れる倫理的課題を探求します。
説明可能な方法が示すべき特性について提案する。
論文 参考訳(メタデータ) (2021-03-31T16:20:37Z) - Joint Modelling of Emotion and Abusive Language Detection [26.18171134454037]
マルチタスク学習フレームワークを用いて,感情と虐待的言語検出の最初のジョイントモデルを提案する。
その結果、感情的特徴を取り入れることで、データセット間での悪用検出性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-05-28T14:08:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。