Validate Quantum State Preparation Programs
- URL: http://arxiv.org/abs/2501.05616v1
- Date: Thu, 09 Jan 2025 23:35:26 GMT
- Title: Validate Quantum State Preparation Programs
- Authors: Liyi Li, Anshu Sharma, Zoukarneini Difaizi Tagba, Sean Frett, Alex Potanin,
- Abstract summary: This paper presents Pqasm: a high-assurance framework implemented with the Coq proof assistant.
The key in the framework is to reduce the program correctness assurance of a program containing a quantum superposition state to the program correctness assurance for the program state without superposition.
We utilize the QuickChick property-based testing framework to test state preparation programs.
- Score: 0.0
- License:
- Abstract: One of the key steps in quantum algorithms is to prepare an initial quantum superposition state with different kinds of features. These so-called state preparation algorithms are essential to the behavior of quantum algorithms, and complicated state preparation algorithms are difficult to develop correctly and effectively. This paper presents Pqasm: a high-assurance framework implemented with the Coq proof assistant, allowing us to certify our Pqasm tool to correctly reflect quantum program behaviors. The key in the framework is to reduce the program correctness assurance of a program containing a quantum superposition state to the program correctness assurance for the program state without superposition. The reduction allows the development of an effective testing framework for testing quantum state preparation algorithm implementations on a classical computer - considered to be a hard problem with no clear solution until this point. We utilize the QuickChick property-based testing framework to test state preparation programs. We evaluated the effectiveness of our approach over 5 case studies implemented using Pqasm; such cases are not even simulatable in the current quantum simulators.
Related papers
- Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Concolic Testing of Quantum Programs [5.3611583388647635]
This paper presents the first concolic testing framework specifically designed for quantum programs.
The framework defines quantum conditional statements that quantify quantum states and presents a symbolization method for quantum variables.
arXiv Detail & Related papers (2024-05-08T07:32:19Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QbC: Quantum Correctness by Construction [4.572433350229651]
We propose Quantum Correctness by Construction (QbC), an approach to constructing quantum programs from their specification in a way that ensures correctness.
We use pre- and postconditions to specify program properties, and propose sound and complete refinement rules for constructing programs in a quantum while language from their specification.
We find that the approach naturally suggests how to derive program details, highlighting key design choices along the way.
arXiv Detail & Related papers (2023-07-28T16:00:57Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Design by Contract Framework for Quantum Software [1.9988400064884826]
We propose a design-by-contract framework for quantum software.
It provides assertions on the input and output states of all quantum circuits built by certain procedures.
Our framework has sufficient expressive power to verify the whole procedure of quantum software.
arXiv Detail & Related papers (2023-03-31T00:21:28Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Proving Quantum Programs Correct [3.2513560268591735]
It verifies the correctness of a range of quantum algorithms including Grover's algorithm and quantum phase estimation.
It aims to highlight both the successes and challenges of formal verification in the quantum context.
arXiv Detail & Related papers (2020-10-03T00:55:41Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.