論文の概要: Semantic Mapping in Indoor Embodied AI -- A Comprehensive Survey and Future Directions
- arxiv url: http://arxiv.org/abs/2501.05750v1
- Date: Fri, 10 Jan 2025 06:58:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:41.398678
- Title: Semantic Mapping in Indoor Embodied AI -- A Comprehensive Survey and Future Directions
- Title(参考訳): 室内体操AIのセマンティックマッピング - 包括的調査と今後の方向性
- Authors: Sonia Raychaudhuri, Angel X. Chang,
- Abstract要約: セマンティックマップは、環境に関する情報を構造化された方法でキャプチャし、エージェントが高度な推論のためにそれを参照できるようにする。
本稿では,組み込みAIにおけるセマンティックマップ構築アプローチ,特に屋内ナビゲーションについて概説する。
フィールドはオープン語彙、クエリ可能、タスクに依存しないマップ表現の開発に向かっている。
- 参考スコア(独自算出の注目度): 10.655606296339055
- License:
- Abstract: Intelligent embodied agents (e.g. robots) need to perform complex semantic tasks in unfamiliar environments. Among many skills that the agents need to possess, building and maintaining a semantic map of the environment is most crucial in long-horizon tasks. A semantic map captures information about the environment in a structured way, allowing the agent to reference it for advanced reasoning throughout the task. While existing surveys in embodied AI focus on general advancements or specific tasks like navigation and manipulation, this paper provides a comprehensive review of semantic map-building approaches in embodied AI, specifically for indoor navigation. We categorize these approaches based on their structural representation (spatial grids, topological graphs, dense point-clouds or hybrid maps) and the type of information they encode (implicit features or explicit environmental data). We also explore the strengths and limitations of the map building techniques, highlight current challenges, and propose future research directions. We identify that the field is moving towards developing open-vocabulary, queryable, task-agnostic map representations, while high memory demands and computational inefficiency still remaining to be open challenges. This survey aims to guide current and future researchers in advancing semantic mapping techniques for embodied AI systems.
- Abstract(参考訳): インテリジェントなエンボディエージェント(例えばロボット)は、馴染みのない環境で複雑なセマンティックタスクを実行する必要がある。
エージェントが保持し、環境のセマンティックマップを構築し、維持するために必要な多くのスキルは、長期的タスクにおいて最も重要なものである。
セマンティックマップは、環境に関する情報を構造化された方法でキャプチャし、エージェントがタスク全体を通して高度な推論のために参照できるようにする。
インボディードAIにおける既存の調査は、一般的な進歩やナビゲーションや操作のような特定のタスクに焦点を当てているが、本論文は、インボディードAIにおけるセマンティックマップ構築アプローチ、特に屋内ナビゲーションに関する包括的なレビューを提供する。
これらの手法は, それらの構造表現(空間格子, トポロジカルグラフ, 密点雲, ハイブリッドマップ)と, それらが符号化する情報の種類(特徴や明示的な環境データ)に基づいて分類する。
また,地図構築技術の強みと限界を探求し,現状の課題を強調し,今後の研究方向性を提案する。
この分野は、オープンな語彙、クエリ可能なタスクに依存しないマップ表現の開発に向かっているのに対して、高いメモリ要求と計算の非効率性は、まだオープンな課題である。
この調査は、エンボディドAIシステムのセマンティックマッピング技術の進歩において、現在および将来の研究者を導くことを目的としている。
関連論文リスト
- A roadmap for generative mapping: unlocking the power of generative AI for map-making [1.128529637069462]
本稿では,地図作成における生成AIのキーとなる応用について述べる。
それは、必要な特定の技術と、現在のメソッドを使用する際の課題を特定する。
地図作成をより使いやすくするための生成マッピングシステム(GMS)を開発するためのロードマップを提供する。
論文 参考訳(メタデータ) (2024-10-21T08:29:43Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
本研究では,屋内環境における埋め込みナビゲーションによる意味領域マッピング手法を提案する。
地域識別を実現するために,視覚言語モデルを用いて地図作成のためのシーン情報を提供する。
グローバルなフレームにエゴセントリックなシーン理解を投影することにより、提案手法は各場所の可能な領域ラベル上の分布としてのセマンティックマップを生成する。
論文 参考訳(メタデータ) (2024-03-11T18:09:50Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
Embodied AIにおけるオブジェクトゴールナビゲーション問題に対処するためのトレーニング不要のソリューションを提案する。
本手法は,古典的な視覚的同時ローカライゼーションとマッピング(V-SLAM)フレームワークに基づく,構造化されたシーン表現を構築する。
本手法は,言語先行情報とシーン統計に基づいてシーングラフのセマンティクスを伝搬し,幾何学的フロンティアに意味知識を導入する。
論文 参考訳(メタデータ) (2023-05-26T13:38:33Z) - Predicting Dense and Context-aware Cost Maps for Semantic Robot
Navigation [35.45993685414002]
本研究では,対象がセマンティックラベルで指定された未知環境における目標ナビゲーションの課題について検討する。
本稿では,意味的コンテキストを暗黙的に含む高コストマップを予測するために,ディープニューラルネットワークアーキテクチャとロス関数を提案する。
また、コストマップ予測のためのセマンティックなヒントを提供するために、アーキテクチャに中間レベルの視覚表現を融合する新しい方法を提案する。
論文 参考訳(メタデータ) (2022-10-17T11:43:19Z) - Weakly-Supervised Multi-Granularity Map Learning for Vision-and-Language
Navigation [87.52136927091712]
我々は,ロボットエージェントが言語指導によって記述された経路をたどって,環境の中をナビゲートするよう訓練する,現実的かつ困難な問題に対処する。
高精度かつ効率的なナビゲーションを実現するためには,環境オブジェクトの空間的位置と意味情報の両方を正確に表現した地図を構築することが重要である。
より包括的にオブジェクトを表現するために,オブジェクトの細粒度(色,テクスチャなど)とセマンティッククラスの両方を含む多粒度マップを提案する。
論文 参考訳(メタデータ) (2022-10-14T04:23:27Z) - Deep Learning for Embodied Vision Navigation: A Survey [108.13766213265069]
身体的視覚ナビゲーション」問題では、エージェントが3D環境をナビゲートする必要がある。
本稿では、総合的な文献調査を提供することで、視覚ナビゲーションの具体的分野における現在の研究の概要を確立することを試みる。
論文 参考訳(メタデータ) (2021-07-07T12:09:04Z) - Learning to Map for Active Semantic Goal Navigation [40.193928212509356]
本稿では,エージェントの視野外のセマンティックマップ生成を積極的に学習する新しいフレームワークを提案する。
我々は、エクスプロイトとエクスプロイトのバランスをとることで、異なる目的をどのように定義できるかを示す。
本手法は,Matterport3Dデータセットによって提供される視覚的に現実的な環境において検証される。
論文 参考訳(メタデータ) (2021-06-29T18:01:30Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
人間のように3Dエンボディ環境のどこからでも言語ガイドされたターゲットに向かって移動する能力は、インテリジェントロボットの「聖杯」目標の1つです。
ほとんどのビジュアルナビゲーションベンチマークは、ステップバイステップの詳細な命令セットに導かれ、固定された出発点から目標に向かって移動することに焦点を当てている。
このアプローチは、人間だけが物体とその周囲がどのように見えるかを説明する現実世界の問題から逸脱し、ロボットにどこからでも航行を依頼する。
論文 参考訳(メタデータ) (2021-03-31T15:01:04Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z) - Probabilistic Semantic Mapping for Urban Autonomous Driving Applications [1.181206257787103]
本研究では,道路,歩道,横断歩道,車線などの静的なランドマークの自動的かつ正確なラベル付けを行うために,画像と予め構築した点クラウドマップ情報を融合することを提案する。
本手法は,2次元画像のセマンティックセグメンテーションを行い,意味ラベルとポイント・クラウド・マップを関連づけて世界を正確にローカライズし,混乱行列の定式化を利用して,鳥の眼球面の確率論的セマンティック・マップを意味点・クラウドから構築する。
論文 参考訳(メタデータ) (2020-06-08T19:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。