A Neighbor-based Approach to Pitch Ownership Models in Soccer
- URL: http://arxiv.org/abs/2501.05870v1
- Date: Fri, 10 Jan 2025 11:11:08 GMT
- Title: A Neighbor-based Approach to Pitch Ownership Models in Soccer
- Authors: Tiago Mendes-Neves, Luís Meireles, João Mendes-Moreira,
- Abstract summary: Pitch ownership models provide valuable assistance to tactical analysts in understanding the game's dynamics.
This paper proposes a novel approach to building pitch ownership models in soccer games using the K-Nearest Neighbors (KNN) algorithm.
- Score: 0.7373617024876725
- License:
- Abstract: Pitch ownership models allow many types of analysis in soccer and provide valuable assistance to tactical analysts in understanding the game's dynamics. The novelty they provide over event-based analysis is that tracking data incorporates context that event-based data does not possess, like player positioning. This paper proposes a novel approach to building pitch ownership models in soccer games using the K-Nearest Neighbors (KNN) algorithm. Our approach provides a fast inference mechanism that can model different approaches to pitch control using the same algorithm. Despite its flexibility, it uses only three hyperparameters to tune the model, facilitating the tuning process for different player skill levels. The flexibility of the approach allows for the emulation of different methods available in the literature by adjusting a small number of parameters, including adjusting for different levels of uncertainty. In summary, the proposed model provides a new and more flexible strategy for building pitch ownership models, extending beyond just replicating existing algorithms, and can provide valuable insights for tactical analysts and open up new avenues for future research. We thoroughly visualize several examples demonstrating the presented models' strengths and weaknesses. The code is available at github.com/nvsclub/KNNPitchControl.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Purposer: Putting Human Motion Generation in Context [30.706219830149504]
We present a novel method to generate human motion to populate 3D indoor scenes.
It can be controlled with various combinations of conditioning signals such as a path in a scene, target poses, past motions, and scenes represented as 3D point clouds.
arXiv Detail & Related papers (2024-04-19T15:16:04Z) - Forecasting Events in Soccer Matches Through Language [0.7373617024876725]
This paper introduces an approach to predicting the next event in a soccer match.
It bears remarkable similarities to the problem faced by Large Language Models (LLMs)
arXiv Detail & Related papers (2024-02-09T23:02:57Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
Deep learning approaches for player tactic forecasting in badminton show promising performance partially attributed to effective reasoning about rally-player interactions.
We propose a turn-based feature attribution approach, ShuttleSHAP, for analyzing forecasting models in badminton based on variants of Shapley values.
arXiv Detail & Related papers (2023-12-18T05:37:51Z) - Model-agnostic Body Part Relevance Assessment for Pedestrian Detection [4.405053430046726]
We present a framework for using sampling-based explanation models in a computer vision context by body part relevance assessment for pedestrian detection.
We introduce a novel sampling-based method similar to KernelSHAP that shows more robustness for lower sampling sizes and, thus, is more efficient for explainability analyses on large-scale datasets.
arXiv Detail & Related papers (2023-11-27T10:10:25Z) - A State-Space Perspective on Modelling and Inference for Online Skill Rating [1.9253333342733674]
We introduce new approaches based on sequential Monte Carlo and discrete hidden Markov models.
We advocate for a state-space model perspective, wherein players' skills are represented as time-varying, and match results serve as observed quantities.
We examine the challenges of scaling up to numerous players and matches, highlighting the main approximations and reductions.
arXiv Detail & Related papers (2023-08-04T16:03:50Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
We propose a Switchable representation learning Framework with Self-Compatibility (SFSC)
SFSC generates a series of compatible sub-models with different capacities through one training process.
SFSC achieves state-of-the-art performance on the evaluated datasets.
arXiv Detail & Related papers (2022-06-16T16:46:32Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Stereo Neural Vernier Caliper [57.187088191829886]
We propose a new object-centric framework for learning-based stereo 3D object detection.
We tackle a problem of how to predict a refined update given an initial 3D cuboid guess.
Our approach achieves state-of-the-art performance on the KITTI benchmark.
arXiv Detail & Related papers (2022-03-21T14:36:07Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
A case-based reasoning (CBR) system solves a new problem by retrieving cases' that are similar to the given problem.
In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs)
Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB.
arXiv Detail & Related papers (2020-10-07T17:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.