TakuNet: an Energy-Efficient CNN for Real-Time Inference on Embedded UAV systems in Emergency Response Scenarios
- URL: http://arxiv.org/abs/2501.05880v2
- Date: Thu, 16 Jan 2025 20:35:28 GMT
- Title: TakuNet: an Energy-Efficient CNN for Real-Time Inference on Embedded UAV systems in Emergency Response Scenarios
- Authors: Daniel Rossi, Guido Borghi, Roberto Vezzani,
- Abstract summary: TakuNet is a novel light-weight architecture which employs techniques such as depth-wise convolutions and an early downsampling stem.<n>It achieves near-state-of-the-art accuracy in classifying aerial images of emergency situations, despite its minimal parameter count.<n>It is suitable for real-time AI processing on resource-constrained platforms and advancing the applicability of drones in emergency scenarios.
- Score: 1.6861784540485294
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Designing efficient neural networks for embedded devices is a critical challenge, particularly in applications requiring real-time performance, such as aerial imaging with drones and UAVs for emergency responses. In this work, we introduce TakuNet, a novel light-weight architecture which employs techniques such as depth-wise convolutions and an early downsampling stem to reduce computational complexity while maintaining high accuracy. It leverages dense connections for fast convergence during training and uses 16-bit floating-point precision for optimization on embedded hardware accelerators. Experimental evaluation on two public datasets shows that TakuNet achieves near-state-of-the-art accuracy in classifying aerial images of emergency situations, despite its minimal parameter count. Real-world tests on embedded devices, namely Jetson Orin Nano and Raspberry Pi, confirm TakuNet's efficiency, achieving more than 650 fps on the 15W Jetson board, making it suitable for real-time AI processing on resource-constrained platforms and advancing the applicability of drones in emergency scenarios. The code and implementation details are publicly released.
Related papers
- A Performance Analysis of You Only Look Once Models for Deployment on Constrained Computational Edge Devices in Drone Applications [0.0]
This study evaluates the deployment of object detection models on resource-constrained edge devices and cloud environments.
The NVIDIA Jetson Orin Nano, Orin NX, and Raspberry Pi 5 (RPI5) devices have been tested to measure their detection accuracy, inference speed, and energy consumption.
arXiv Detail & Related papers (2025-02-06T17:22:01Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Optimized Deployment of Deep Neural Networks for Visual Pose Estimation
on Nano-drones [9.806742394395322]
Miniaturized unmanned aerial vehicles (UAVs) are gaining popularity due to their small size, enabling new tasks such as indoor navigation or people monitoring.
This work proposes a new automatic optimization pipeline for visual pose estimation tasks using Deep Neural Networks (DNNs)
Our results improve the state-of-the-art reducing inference latency by up to 3.22x at iso-error.
arXiv Detail & Related papers (2024-02-23T11:35:57Z) - Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone
Networks [6.313148708539912]
wildfire detection in remote and forest areas is crucial for minimizing devastation and preserving ecosystems.
Drones offer agile access to remote, challenging terrains, equipped with advanced imaging technology.
limited computation and battery resources pose challenges in implementing and efficient image classification models.
This paper aims to develop a real-time image classification and fire segmentation model.
arXiv Detail & Related papers (2024-01-16T04:16:46Z) - EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks [107.62975594230687]
We demonstrate an application where event cameras excel: accurately estimating the impact location of fast-moving objects.
We introduce a lightweight event representation called Binary Event History Image (BEHI) to encode event data at low latency.
We show that the system is capable of achieving a success rate of 81% in catching balls targeted at different locations, with a velocity of up to 13 m/s even on compute-constrained embedded platforms.
arXiv Detail & Related papers (2023-04-14T15:23:28Z) - NanoFlowNet: Real-time Dense Optical Flow on a Nano Quadcopter [11.715961583058226]
Nano quadcopters are small, agile, and cheap platforms that are well suited for deployment in narrow, cluttered environments.
Recent machine learning developments promise high-performance perception at low latency.
dedicated edge computing hardware has the potential to augment the processing capabilities of these limited devices.
We present NanoFlowNet, a lightweight convolutional neural network for real-time dense optical flow estimation on edge computing hardware.
arXiv Detail & Related papers (2022-09-14T20:35:51Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.