Discovery of sustainable energy materials via the machine-learned material space
- URL: http://arxiv.org/abs/2501.05903v1
- Date: Fri, 10 Jan 2025 12:00:08 GMT
- Title: Discovery of sustainable energy materials via the machine-learned material space
- Authors: Malte Grunert, Max Großmann, Erich Runge,
- Abstract summary: We show that a machine learning model can gain an understanding of the material space without user-induced bias.
We show how the learned material space can be used to identify more sustainable alternatives to critical materials in energy-related technologies.
- Score: 0.0
- License:
- Abstract: Does a machine learning model actually gain an understanding of the material space? We answer this question in the affirmative on the example of the OptiMate model, a graph attention network trained to predict the optical properties of semiconductors and insulators. By applying the UMAP dimensionality reduction technique to its latent embeddings, we demonstrate that the model captures a nuanced and interpretable representation of the materials space, reflecting chemical and physical principles, without any user-induced bias. This enables clustering of almost 10,000 materials based on optical properties and chemical similarities. Beyond this understanding, we demonstrate how the learned material space can be used to identify more sustainable alternatives to critical materials in energy-related technologies, such as photovoltaics. These findings demonstrate the dual utility of machine learning models in materials science: Accurately predicting material properties while providing insights into the underlying materials space. The approach demonstrates the broader potential of leveraging learned materials spaces for the discovery and design of materials for diverse applications, and is easily applicable to any state-of-the-art machine learning model.
Related papers
- DARWIN 1.5: Large Language Models as Materials Science Adapted Learners [46.7259033847682]
We propose DARWIN 1.5, the largest open-source large language model tailored for materials science.
DARWIN eliminates the need for task-specific descriptors and enables a flexible, unified approach to material property prediction and discovery.
Our approach integrates 6M material domain papers and 21 experimental datasets from 49,256 materials across modalities while enabling cross-task knowledge transfer.
arXiv Detail & Related papers (2024-12-16T16:51:27Z) - Foundation Model for Composite Materials and Microstructural Analysis [0.0]
We present a foundation model specifically designed for composite materials.
Our findings validate the feasibility and effectiveness of foundation models in composite materials.
This framework enables high-accuracy predictions even when experimental data are scarce.
arXiv Detail & Related papers (2024-11-10T19:06:25Z) - Data-efficient and Interpretable Inverse Materials Design using a Disentangled Variational Autoencoder [2.563209727695243]
Inverse materials design has proven successful in accelerating novel material discovery.
Many inverse materials design methods use unsupervised learning where a latent space is learned to offer a compact description of materials representations.
Here, we present a semi-supervised learning approach based on a disentangled variational autoencoder to learn a probabilistic relationship between features, latent variables and target properties.
arXiv Detail & Related papers (2024-09-10T02:21:13Z) - Intrinsic Image Diffusion for Indoor Single-view Material Estimation [55.276815106443976]
We present Intrinsic Image Diffusion, a generative model for appearance decomposition of indoor scenes.
Given a single input view, we sample multiple possible material explanations represented as albedo, roughness, and metallic maps.
Our method produces significantly sharper, more consistent, and more detailed materials, outperforming state-of-the-art methods by $1.5dB$ on PSNR and by $45%$ better FID score on albedo prediction.
arXiv Detail & Related papers (2023-12-19T15:56:19Z) - Alchemist: Parametric Control of Material Properties with Diffusion
Models [51.63031820280475]
Our method capitalizes on the generative prior of text-to-image models known for photorealism.
We show the potential application of our model to material edited NeRFs.
arXiv Detail & Related papers (2023-12-05T18:58:26Z) - Multimodal Learning for Materials [7.167520424757711]
We introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials.
We demonstrate our framework's potential using data from the Materials Project database on multiple axes.
arXiv Detail & Related papers (2023-11-30T18:35:29Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
We review advances in AI-driven materials-by-design and their applications to energetic materials.
We evaluate methods in the literature in terms of their capacity to learn from a small/limited number of data.
We suggest a few promising future research directions for EM materials-by-design, such as meta-learning, active learning, Bayesian learning, and semi-/weakly-supervised learning.
arXiv Detail & Related papers (2022-11-15T14:41:11Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
In the domain of machine learning, an awareness of symmetries has driven impressive performance breakthroughs.
We argue that both the physics community and the broader machine learning community have much to understand.
arXiv Detail & Related papers (2022-03-11T18:27:04Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Prediction of properties of metal alloy materials based on machine
learning [6.827605235800052]
In this paper, we conduct experiments on atomic volume, atomic energy and atomic formation energy of metal alloys.
Through the traditional machine learning models, deep learning network and automated machine learning, we verify the feasibility of machine learning in material property prediction.
The experimental results show that the machine learning can predict the material properties accurately.
arXiv Detail & Related papers (2021-09-20T09:40:36Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.