Two-quanta processes in coupled double-quantum-dot cavity systems
- URL: http://arxiv.org/abs/2501.05967v1
- Date: Fri, 10 Jan 2025 13:52:52 GMT
- Title: Two-quanta processes in coupled double-quantum-dot cavity systems
- Authors: Tatiana Mihaescu, Aurelian Isar, Mihai A Macovei,
- Abstract summary: We study the quantum dynamics of a compound sample consisting from a semiconductor double quantum dot (DQD) system non-linearly coupled with a leaking micro-resonator.
The steady-state quantum dynamics of this complex non-linear system exhibits a variety of possible effects.
- Score: 0.0
- License:
- Abstract: The quantum dynamics of a compound sample consisting from a semiconductor double quantum dot (DQD) system non-linearly coupled with a leaking single-mode micro-resonator is theoretically investigated. The focus is on the resonance condition when the transition frequency of the double quantum dot equals to the doubled resonator frequency, respectively, and the resulting interplay among the involved phonon or photon channels. As a result, the steady-state quantum dynamics of this complex non-linear system exhibits a variety of possible effects that have been demonstrated here. Particularly, we have found the relationship among the electrical current through the double quantum dot and the microwave field inside the resonator that is nonlinearly coupled to it, with a corresponding emphasizing on their critical behaviors. Additionally, the quantum correlations of the photon flux generated into the resonator mode vary from super-Poissonian to Poissonian photon statistics, leading to single-qubit lasing phenomena at microwave frequencies.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Flux-Tunable Hybridization in a Double Quantum Dot Interferometer [7.0140131556353]
tuning of the tunnel coupling between two such electronic levels with flux, implemented in a loop comprising two quantum dots.
Results establish the feasibility and limitations of parity readout of qubits with tunnel couplings tuned by flux.
arXiv Detail & Related papers (2023-03-07T18:57:31Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Frequency combs with parity-protected cross-correlations from
dynamically modulated qubit arrays [117.44028458220427]
We develop a general theoretical framework to dynamically engineer quantum correlations in the frequency-comb emission from an array of superconducting qubits in a waveguide.
We demonstrate, that when the resonance of the two qubits are periodically modulated with a $pi$ phase shift, it is possible to realize simultaneous bunching and antibunching in cross-correlations of the scattered photons from different sidebands.
arXiv Detail & Related papers (2022-03-01T13:12:45Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Nonreciprocal Transmission and Entanglement in a cavity-magnomechanical
system [10.520692160489133]
Quantum entanglement is generated with a cavity-magnomechanical system.
By breaking symmetry of the configuration, we realize nonreciprocal photon transmission and one-way bipartite quantum entanglement.
arXiv Detail & Related papers (2021-01-25T07:41:40Z) - Deterministic quantum correlation in an interferometric scheme [0.0]
In this paper, the fundamental principles of quantumness are investigated in an interferometric scheme for controllable quantum correlation.
In a Mach-Zehnder interferometer, the photonic de Broglie wavelength has also been studied for quantum sensing with an enhanced phase resolution overcoming the standard quantum limit.
arXiv Detail & Related papers (2020-12-17T04:12:49Z) - Microwave multiphoton conversion via coherently driven permanent dipole
systems [68.8204255655161]
We investigate a leaking single-mode quantized cavity field coupled with a resonantly driven two-level system possessing permanent dipoles.
The frequencies of the interacting subsystems are being considered very different, e.g., microwave ranges for the cavity and optical domains for the frequency of the two-level emitter, respectively.
arXiv Detail & Related papers (2020-08-12T16:20:44Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.