論文の概要: From Conversation to Automation: Leveraging Large Language Models to Analyze Strategies in Problem Solving Therapy
- arxiv url: http://arxiv.org/abs/2501.06101v1
- Date: Fri, 10 Jan 2025 16:54:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:27:37.682908
- Title: From Conversation to Automation: Leveraging Large Language Models to Analyze Strategies in Problem Solving Therapy
- Title(参考訳): 会話から自動化へ:大規模言語モデルを活用して問題解決療法の戦略分析
- Authors: Elham Aghakhani, Lu Wang, Karla T. Washington, George Demiris, Jina Huh-Yoo, Rezvaneh Rezapour,
- Abstract要約: 問題解決療法(PST)は、個人がストレスを管理し、個人の問題を解決するのに役立つ。
メンタルヘルスがチャットボットや大規模言語モデル(LLM)のような技術を統合するにつれ、PSTを効果的に自動化する方法を理解することが重要である。
本研究は、匿名化された治療転写産物を利用して、様々なLSMモデルとトランスフォーマーモデルを用いて治療介入を分析し分類する。
- 参考スコア(独自算出の注目度): 6.700608883427542
- License:
- Abstract: Problem-solving therapy (PST) is a structured psychological approach that helps individuals manage stress and resolve personal issues by guiding them through problem identification, solution brainstorming, decision-making, and outcome evaluation. As mental health care increasingly integrates technologies like chatbots and large language models (LLMs), understanding how PST can be effectively automated is important. This study leverages anonymized therapy transcripts to analyze and classify therapeutic interventions using various LLMs and transformer-based models. Our results show that GPT-4o achieved the highest accuracy (0.76) in identifying PST strategies, outperforming other models. Additionally, we introduced a new dimension of communication strategies that enhances the current PST framework, offering deeper insights into therapist-client interactions. This research demonstrates the potential of LLMs to automate complex therapeutic dialogue analysis, providing a scalable, efficient tool for mental health interventions. Our annotation framework can enhance the accessibility, effectiveness, and personalization of PST, supporting therapists in real-time with more precise, targeted interventions.
- Abstract(参考訳): 問題解決療法(英: problem-solving therapy、PST)は、個人がストレスを管理し、問題解決、意思決定、結果評価を通じて個人的問題を導くことを支援する、構造化された心理的アプローチである。
メンタルヘルスがチャットボットや大規模言語モデル(LLM)のような技術を統合するにつれ、PSTを効果的に自動化する方法を理解することが重要である。
本研究は、匿名化された治療転写産物を利用して、様々なLSMモデルとトランスフォーマーモデルを用いて治療介入を分析し分類する。
その結果, GPT-4o は他のモデルよりも高い精度 (0.76) を示した。
さらに、我々は、セラピストとクライアントの相互作用に関する深い洞察を提供する、現在のPSTフレームワークを強化するコミュニケーション戦略の新たな次元を導入しました。
本研究は、複雑な治療対話分析を自動化するLLMの可能性を実証し、メンタルヘルス介入のためのスケーラブルで効率的なツールを提供する。
我々のアノテーションフレームワークは、PSTのアクセシビリティ、有効性、パーソナライズを向上し、より正確で標的とした介入でリアルタイムでセラピストを支援する。
関連論文リスト
- AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling [57.054489290192535]
伝統的な個人の心理カウンセリングは主にニッチであり、心理学的な問題を持つ個人によって選択されることが多い。
オンラインの自動カウンセリングは、恥の感情によって助けを求めることをためらう人たちに潜在的な解決策を提供する。
論文 参考訳(メタデータ) (2025-01-16T09:57:12Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、多様な、アクセス可能な、スティグマのない、パーソナライズされた、リアルタイムのメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-17T22:04:32Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
我々は, GPT-4 のような大規模言語モデル (LLM) を用いて, 心理的コンサルテーションサービスの強化について検討する。
提案手法では,ユーザ入力に動的に適応する新しい階層型プロンプトシステムを提案する。
また,LLMの感情的インテリジェンスを高めるために,共感とシナリオに基づくプロンプトを開発する。
論文 参考訳(メタデータ) (2024-08-29T05:47:14Z) - Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy [6.952909762512736]
そこで本研究では,大規模言語モデル (LLM) を指導するためのプロンプトエンジニアリングの効果について検討する。
本稿では,プロンプトエンジニアリング手法を適切に利用することにより,プロトタイズされた治療を提供するモデルの能力を向上できることを実証する。
論文 参考訳(メタデータ) (2024-08-27T17:25:16Z) - Rethinking the Alignment of Psychotherapy Dialogue Generation with Motivational Interviewing Strategies [30.237161801912453]
大規模言語モデル(LLM)は、特にモチベーション・インタビュー(MI)の文脈において、精神療法的対話を生み出すことを約束している。
MI戦略をMIスキルのセットとして適用することで、説明可能性を備えたより制御可能な治療に順応した会話が実現可能となる。
論文 参考訳(メタデータ) (2024-08-12T23:19:02Z) - Optimizing Psychological Counseling with Instruction-Tuned Large Language Models [9.19192059750618]
本稿では,心理カウンセリングにおける大規模言語モデル(LLM)の適用について検討する。
本稿では,共感的,関連性,支援的な応答を提供することで,特定のプロンプトを持つLLMを指導し,その性能を高める方法を提案する。
論文 参考訳(メタデータ) (2024-06-19T15:13:07Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling [14.04866656172336]
心理療法セッションで使用される自然言語から治療作業同盟を推定するための新しい枠組みを提案する。
提案手法は,高度大規模言語モデル(LLM)を用いて心理療法セッションの転写を解析し,それらをワーキングアライアンスインベントリにおけるステートメントの分散表現と比較する。
論文 参考訳(メタデータ) (2024-02-22T16:56:44Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。