From Conversation to Automation: Leveraging LLMs for Problem-Solving Therapy Analysis
- URL: http://arxiv.org/abs/2501.06101v2
- Date: Tue, 18 Feb 2025 22:02:42 GMT
- Title: From Conversation to Automation: Leveraging LLMs for Problem-Solving Therapy Analysis
- Authors: Elham Aghakhani, Lu Wang, Karla T. Washington, George Demiris, Jina Huh-Yoo, Rezvaneh Rezapour,
- Abstract summary: Problem-solving therapy (PST) helps individuals manage stress and resolve personal issues.
It is important to thoroughly understand how each session of PST is conducted before attempting to automate it.
We developed a comprehensive framework for PST annotation using established PST Core Strategies and a set of novel Facilitative Strategies.
- Score: 6.700608883427542
- License:
- Abstract: Problem-solving therapy (PST) is a structured psychological approach that helps individuals manage stress and resolve personal issues by guiding them through problem identification, solution brainstorming, decision-making, and outcome evaluation. As mental health care increasingly adopts technologies like chatbots and large language models (LLMs), it is important to thoroughly understand how each session of PST is conducted before attempting to automate it. We developed a comprehensive framework for PST annotation using established PST Core Strategies and a set of novel Facilitative Strategies to analyze a corpus of real-world therapy transcripts to determine which strategies are most prevalent. Using various LLMs and transformer-based models, we found that GPT-4o outperformed all models, achieving the highest accuracy (0.76) in identifying all strategies. To gain deeper insights, we examined how strategies are applied by analyzing Therapeutic Dynamics (autonomy, self-disclosure, and metaphor), and linguistic patterns within our labeled data. Our research highlights LLMs' potential to automate therapy dialogue analysis, offering a scalable tool for mental health interventions. Our framework enhances PST by improving accessibility, effectiveness, and personalized support for therapists.
Related papers
- AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling [57.054489290192535]
Traditional in-person psychological counseling remains primarily niche, often chosen by individuals with psychological issues.
Online automated counseling offers a potential solution for those hesitant to seek help due to feelings of shame.
arXiv Detail & Related papers (2025-01-16T09:57:12Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources.
This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies.
arXiv Detail & Related papers (2024-10-17T22:04:32Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
We explore the use of large language models (LLMs) like GPT-4 to augment psychological consultation services.
Our approach introduces a novel layered prompting system that dynamically adapts to user input.
We also develop empathy-driven and scenario-based prompts to enhance the LLM's emotional intelligence.
arXiv Detail & Related papers (2024-08-29T05:47:14Z) - Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy [6.952909762512736]
We examine the effects of prompt engineering to guide Large Language Models (LLMs) in delivering parts of a Problem-Solving Therapy session via text.
We demonstrate that the models' capability to deliver protocolized therapy can be improved with the proper use of prompt engineering methods.
arXiv Detail & Related papers (2024-08-27T17:25:16Z) - Rethinking the Alignment of Psychotherapy Dialogue Generation with Motivational Interviewing Strategies [30.237161801912453]
Large language models (LLMs) have shown promise in generating psychotherapeutic dialogues, particularly in the context of motivational interviewing (MI)
Applying MI strategies, a set of MI skills, to generate more controllable therapeutic-adherent conversations with explainability provides a possible solution.
arXiv Detail & Related papers (2024-08-12T23:19:02Z) - Optimizing Psychological Counseling with Instruction-Tuned Large Language Models [9.19192059750618]
This paper explores the application of large language models (LLMs) in psychological counseling.
We present a method for instruction tuning LLMs with specialized prompts to enhance their performance in providing empathetic, relevant, and supportive responses.
arXiv Detail & Related papers (2024-06-19T15:13:07Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling [14.04866656172336]
We present a novel framework to infer the therapeutic working alliance from the natural language used in psychotherapy sessions.
Our approach utilizes advanced large language models (LLMs) to analyze transcripts of psychotherapy sessions and compare them with distributed representations of statements in the working alliance inventory.
arXiv Detail & Related papers (2024-02-22T16:56:44Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
We introduce an innovative methodology that synthesizes human insights with the computational prowess of Large Language Models (LLMs)
By utilizing the in-context learning potential of ChatGPT, we generate an ExTensible Emotional Support dialogue dataset, named ExTES.
Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions.
arXiv Detail & Related papers (2023-08-17T10:49:18Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.