論文の概要: Faster quantum chemistry simulations on a quantum computer with improved tensor factorization and active volume compilation
- arxiv url: http://arxiv.org/abs/2501.06165v1
- Date: Fri, 10 Jan 2025 18:40:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:31.440187
- Title: Faster quantum chemistry simulations on a quantum computer with improved tensor factorization and active volume compilation
- Title(参考訳): 量子コンピュータにおける高速量子化学シミュレーション
- Authors: Athena Caesura, Christian L. Cortes, William Poll, Sukin Sim, Mark Steudtner, Gian-Luca R. Anselmetti, Matthias Degroote, Nikolaj Moll, Raffaele Santagati, Michael Streif, Christofer S. Tautermann,
- Abstract要約: 分子系の電子構造計算におけるいくつかの進歩を紹介する。
これらの進歩の1つは、ブロックイン対称性シフトハイパーコントラクション(BLISS-THC)のための新しいフレームワークである。
本稿では,計算に挑戦するベンチマーク分子P450に焦点をあてて,提案手法のベンチマークを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Electronic structure calculations of molecular systems are among the most promising applications for fault-tolerant quantum computing (FTQC) in quantum chemistry and drug design. However, while recent algorithmic advancements such as qubitization and Tensor Hypercontraction (THC) have significantly reduced the complexity of such calculations, they do not yet achieve computational runtimes short enough to be practical for industrially relevant use cases. In this work, we introduce several advances to electronic structure calculation for molecular systems, resulting in a two-orders-of-magnitude speedup of estimated runtimes over prior-art algorithms run on comparable quantum devices. One of these advances is a novel framework for block-invariant symmetry-shifted Tensor Hypercontraction (BLISS-THC), with which we achieve the tightest Hamiltonian factorizations reported to date. We compile our algorithm for an Active Volume (AV) architecture, a technical layout that has recently been proposed for fusion-based photonic quantum hardware. AV compilation contributes towards a lower runtime of our computation by eliminating overheads stemming from connectivity issues in the underlying surface code. We present a detailed benchmark of our approach, focusing primarily on the computationally challenging benchmark molecule P450. Leveraging a number of hardware tradeoffs in interleaving-based photonic FTQC, we estimate runtimes for the electronic structure calculation of P450 as a function of the device footprint.
- Abstract(参考訳): 分子系の電子構造計算は、量子化学と薬物設計におけるフォールトトレラント量子コンピューティング(FTQC)の最も有望な応用の一つである。
しかし、最近の量子化やテンソルハイパーコントラクション(THC)のようなアルゴリズムの進歩は、そのような計算の複雑さを著しく減らしたものの、産業的に関係のあるユースケースに実用的であるのに十分な計算ランタイムをまだ達成していない。
そこで本研究では,分子系の電子構造計算におけるいくつかの進歩を紹介する。
これらの進歩の1つは、ブロック不変対称性シフトテンソルハイパーコントラクション(BLISS-THC)のための新しいフレームワークであり、これまでに報告された最も厳密なハミルトン分解を達成する。
我々は最近,融合型フォトニック量子ハードウェアとして提案されている技術レイアウトであるActive Volume (AV) アーキテクチャのアルゴリズムをコンパイルする。
AVコンパイルは、基盤となるサーフェスコードの接続上の問題に起因するオーバーヘッドを排除し、計算の低ランタイムに寄与する。
本稿では,計算に挑戦するベンチマーク分子P450を中心に,我々のアプローチの詳細なベンチマークを示す。
インターリービングベースフォトニックFTQCにおける多くのハードウェアトレードオフを活用し、デバイスフットプリントの関数としてP450の電子構造計算のランタイムを推定する。
関連論文リスト
- Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
量子コンピューティングは、量子化学計算を可能にするための有望な道を提供する。
最近の研究は、ノイズ中間量子(NISQ)デバイスのためのアルゴリズムの開発とスケーリングに向けられている。
論文 参考訳(メタデータ) (2024-08-20T18:00:01Z) - Tensor-based quantum phase difference estimation for large-scale demonstration [3.492424366069693]
量子位相差推定(QPDE)方式を利用したエネルギー計算アルゴリズムを開発した。
このアルゴリズムは, 効率的な実装に加えて, 指数関数的に非偏極雑音の影響を低減させる。
我々は,IBM超伝導デバイス上での一次元ハバードモデルのエネルギーギャップ計算を実演する。
論文 参考訳(メタデータ) (2024-08-09T09:01:37Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Workflow for practical quantum chemical calculations with quantum phase estimation algorithm: electronic ground and π-π* excited states of benzene and its derivatives† [0.0]
量子コンピュータは、従来のコンピュータに比べて計算資源が少ない完全構成の相互作用計算を実行することが期待されている。
QPEに基づく量子化学計算は、古典的コンピュータ上での数値シミュレーションにおいても報告されている。
電子グラウンドのQPEシミュレーションとベンゼンおよびそのクロロおよびニトロ誘導体のπ-pi*励起一重項状態について報告する。
論文 参考訳(メタデータ) (2023-12-27T01:57:39Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Electronic Structure Calculations using Quantum Computing [0.0]
本稿では,変分量子固有解法(VQE)アルゴリズムを用いた古典量子計算手法を提案する。
我々のアルゴリズムは古典的手法よりも少ない計算資源を必要とする合理化プロセスを提供する。
結果は,新しい材料や技術の開発を迅速化するアルゴリズムの可能性を示している。
論文 参考訳(メタデータ) (2023-05-13T12:02:05Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Reducing Unitary Coupled Cluster Circuit Depth by Classical Stochastic
Amplitude Pre-Screening [0.0]
Unitary Coupled Cluster (UCC)アプローチは、量子化学計算を実行するために量子ハードウェアを利用するための魅力的な方法である。
本稿では,従来のUCC前処理ステップを用いてUCCアンサッツの重要な励起を判定する,古典量子と古典量子の併用手法を提案する。
論文 参考訳(メタデータ) (2021-08-24T18:34:14Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
本稿では、分子の全電子エネルギーと古典的コンピュータ上の特性を計算できる新しいハイブリッド古典的アルゴリズムを提案する。
本稿では,現在利用可能な量子コンピュータ上で,化学的に関連性のある結果と精度を実現する量子古典ハイブリッドアルゴリズムの能力を実証する。
論文 参考訳(メタデータ) (2021-06-22T18:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。