Theory of Irreversibility in Quantum Many-Body Systems
- URL: http://arxiv.org/abs/2501.06183v2
- Date: Wed, 29 Jan 2025 23:59:28 GMT
- Title: Theory of Irreversibility in Quantum Many-Body Systems
- Authors: Takato Yoshimura, Lucas Sá,
- Abstract summary: We address the longstanding challenge in quantum many-body theory of reconciling unitary dynamics with irreversible relaxation.<n>In classical chaos, the unitary evolution operator develops Ruelle-Pollicott (RP) resonances inside the unit circle in the continuum limit, leading to mixing.<n>In contrast, the theory of quantum many-body RP resonances and their link to irreversibility remain underdeveloped.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the longstanding challenge in quantum many-body theory of reconciling unitary dynamics with irreversible relaxation. In classical chaos, the unitary evolution operator develops Ruelle-Pollicott (RP) resonances inside the unit circle in the continuum limit, leading to mixing. In the semiclassical limit, chaotic single-particle quantum systems relax with the same RP resonances. In contrast, the theory of quantum many-body RP resonances and their link to irreversibility remain underdeveloped. Here, we relate the spectral form factor to the sum of autocorrelation functions and, in generic many-body lattice systems without conservation laws, argue that all quantum many-body RP resonances converge inside the unit disk, highlighting the role of nonunitary and the thermodynamic limit. While we conjecture this picture to be general, we analytically prove the emergence of irreversibility in the random phase model (RPM), a paradigmatic Floquet quantum circuit model, in the limit of large local Hilbert space dimension. To this end, we couple it to local environments and compute the exact time evolution of autocorrelation functions, the dissipative form factor, and out-of-time-order correlation functions (OTOCs). Although valid for any dissipation strength, we then focus on weak dissipation to clarify the origin of irreversibility in unitary systems. When the dissipationless limit is taken after the thermodynamic limit, the unitary quantum map develops an infinite tower of decaying RP resonances -- chaotic systems display so-called anomalous relaxation. We also show that the OTOC in the RPM can undergo a two-stage relaxation and that during the second stage, the approach to the stationary value is again controlled by the leading RP resonance. [See the paper for the full abstract.]
Related papers
- Quantum Rabi oscillations in the semiclassical limit: backreaction on the cavity field and entanglement [89.99666725996975]
We show that for a strong atom-field coupling, when the duration of the $pi $pulse is below $100omega -1$, the behaviour of the atomic excitation probability deviates significantly from the textbook.
In the rest of this work we study numerically the backreaction of the qubit on the cavity field and the resulting atom-field entanglement.
arXiv Detail & Related papers (2025-04-12T23:24:59Z) - Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.
We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.
We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Bath Dynamical Decoupling with a Quantum Channel [44.99833362998488]
We find that bath dynamical decoupling works if and only if the kick is ergodic.
We study in which circumstances CPTP kicks on a mono-partite quantum system induce quantum Zeno dynamics with its Hamiltonian cancelled out.
arXiv Detail & Related papers (2024-09-27T07:47:52Z) - Quantum correlations in the steady state of light-emitter ensembles from
perturbation theory [0.0]
In systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit exhibits spin squeezing.
Our main result is that in systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit generically exhibits spin squeezing.
arXiv Detail & Related papers (2024-02-26T18:50:30Z) - Observation of many-body dynamical localization [12.36065516066796]
We present evidence for many-body dynamical localization for the Lieb-Liniger version of the many-body quantum kicked rotor.
Our results shed light on the boundary between the classical, chaotic world and the realm of quantum physics.
arXiv Detail & Related papers (2023-12-21T14:24:50Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Quasi-equilibrium and quantum correlation in an open spin-pair system [0.0]
Quasi-equilibrium states that can be prepared in solids through Nuclear Magnetic Resonance (NMR) techniques are out-of-equilibrium states that slowly relax towards thermodynamic equilibrium with the lattice.
In this work, we use the quantum discord dynamics as a witness of the quantum correlation in this kind of state.
arXiv Detail & Related papers (2023-03-29T04:33:06Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Unified theory of local quantum many-body dynamics: Eigenoperator
thermalization theorems [0.0]
We show that quantum many-body systems 'out-of-equilibrium' are always in a time-dependent equilibrium state for any natural initial state.
The work opens the possibility of designing novel out-of-equilibrium phases, with the newly identified corollary and fragmentation phase transitions being examples.
arXiv Detail & Related papers (2023-01-17T18:58:20Z) - Sunburst quantum Ising model under interaction quench: entanglement and
role of initial state coherence [0.0]
We study the non-equilibrium dynamics of an isolated bipartite quantum system under interaction quench.
We show the importance of the role played by the coherence of the initial state in deciding the nature of thermalization.
arXiv Detail & Related papers (2022-12-23T11:57:47Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Nonlocality, entropy creation, and entanglement in quantum many-body
systems [0.0]
We propose a reinterpretation and reformulation of the single-particle Green's function in nonrelativistic quantum many-body theory.
We postulate that the multiplicity of each quantized solution is directly related to the ensemble averaged spectrum and the entropy created by measurement of the particle.
arXiv Detail & Related papers (2021-01-04T14:08:30Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Localization of Rung Pairs in Hard-core Bose-Hubbard Ladder [13.46516066673]
We study the rung-pair localization of the Bose-Hubbard ladder model without quenched disorder.
In the hard-core limit, there exists a rung-pair localization both at the edges and in the bulk.
Our results reveal another interesting type of disorder-free localization related to a zero-energy flat band.
arXiv Detail & Related papers (2020-05-18T08:40:40Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.