Unified theory of local quantum many-body dynamics: Eigenoperator
thermalization theorems
- URL: http://arxiv.org/abs/2301.07091v2
- Date: Mon, 24 Jul 2023 20:07:37 GMT
- Title: Unified theory of local quantum many-body dynamics: Eigenoperator
thermalization theorems
- Authors: Berislav Bu\v{c}a
- Abstract summary: We show that quantum many-body systems 'out-of-equilibrium' are always in a time-dependent equilibrium state for any natural initial state.
The work opens the possibility of designing novel out-of-equilibrium phases, with the newly identified corollary and fragmentation phase transitions being examples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explaining quantum many-body dynamics is a long-held goal of physics. A
rigorous operator algebraic theory of dynamics in locally interacting systems
in any dimension is provided here in terms of time-dependent equilibrium
(Gibbs) ensembles. The theory explains dynamics in closed, open and
time-dependent systems, provided that relevant pseudolocal quantities can be
identified, and time-dependent Gibbs ensembles unify wide classes of quantum
non-ergodic and ergodic systems. The theory is applied to quantum many-body
scars, continuous, discrete and dissipative time crystals, Hilbert space
fragmentation, lattice gauge theories, and disorder-free localization, among
other cases. Novel pseudolocal classes of operators are introduced in the
process: projected-local, which are local only for some states, crypto-local,
whose locality is not manifest in terms of any finite number of local densities
and transient ones, that dictate finite-time relaxation dynamics. An immediate
corollary is proving saturation of the Mazur bound for the Drude weight. This
proven theory is intuitively the rigorous algebraic counterpart of the weak
eigenstate thermalization hypothesis and has deep implications for
thermodynamics: quantum many-body systems 'out-of-equilibrium' are actually
always in a time-dependent equilibrium state for any natural initial state. The
work opens the possibility of designing novel out-of-equilibrium phases, with
the newly identified scarring and fragmentation phase transitions being
examples.
Related papers
- Dynamics of Pseudoentanglement [0.03320194947871346]
dynamics of quantum entanglement plays a central role in explaining the emergence of thermal equilibrium in isolated many-body systems.
Recent works have introduced a notion of pseudoentanglement describing ensembles of many-body states.
This prompts the question: how much entanglement is truly necessary to achieve thermal equilibrium in quantum systems?
arXiv Detail & Related papers (2024-03-14T17:54:27Z) - Understanding multiple timescales in quantum dissipative dynamics:
Insights from quantum trajectories [0.0]
We show that open quantum systems with nearly degenerate energy levels exhibit long-lived metastable states in the approach to equilibrium.
This is a result of dramatic separation of timescales due to differences between Liouvillian eigenvalues.
arXiv Detail & Related papers (2024-02-07T02:06:51Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Metastable discrete time-crystal resonances in a dissipative central
spin system [0.0]
Generalizing the theory of metastability in open quantum systems, we develop an effective description for the evolution within a long-lived metastable subspace.
Our study links to timely questions concerning emergent collective behavior in the 'prethermal' stage of a dissipative quantum many-body evolution.
arXiv Detail & Related papers (2022-05-23T12:27:09Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Local Quantum Theory with Fluids in Space-Time [0.0]
An explicit, unambiguous, and Lorentz-covariant 'local hidden variable theory' in space-time is presented.
There is no inconsistency with Bell's theorem because this a local many-worlds theory.
The experience of collapse, Born rule probability, and environmental decoherence are discussed.
arXiv Detail & Related papers (2021-07-14T09:31:17Z) - Subdiffusive dynamics and critical quantum correlations in a
disorder-free localized Kitaev honeycomb model out of equilibrium [0.0]
Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous lattice gauge theories.
In this work we show that this mechanism can lead to unconventional states of quantum matter as the absence of thermalization lifts constraints imposed by equilibrium statistical physics.
arXiv Detail & Related papers (2020-12-10T15:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.