論文の概要: BEN: Using Confidence-Guided Matting for Dichotomous Image Segmentation
- arxiv url: http://arxiv.org/abs/2501.06230v1
- Date: Wed, 08 Jan 2025 01:30:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 20:44:03.194359
- Title: BEN: Using Confidence-Guided Matting for Dichotomous Image Segmentation
- Title(参考訳): BEN: ディコトコス画像のセグメンテーションに信頼誘導マッティングを使う
- Authors: Maxwell Meyer, Jack Spruyt,
- Abstract要約: CGM(Confidence-Guided Matting)と呼ばれる画像セグメンテーションのための新しいアーキテクチャ手法を提案する。
BENは、初期セグメンテーションのためのBENベースと、信頼性向上のためのBENリファイナの2つのコンポーネントで構成されている。
提案手法は,dis5K検証データセットにおける現在の最先端手法よりも大幅に改善されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Current approaches to dichotomous image segmentation (DIS) treat image matting and object segmentation as fundamentally different tasks. As improvements in image segmentation become increasingly challenging to achieve, combining image matting and grayscale segmentation techniques offers promising new directions for architectural innovation. Inspired by the possibility of aligning these two model tasks, we propose a new architectural approach for DIS called Confidence-Guided Matting (CGM). We created the first CGM model called Background Erase Network (BEN). BEN is comprised of two components: BEN Base for initial segmentation and BEN Refiner for confidence refinement. Our approach achieves substantial improvements over current state-of-the-art methods on the DIS5K validation dataset, demonstrating that matting-based refinement can significantly enhance segmentation quality. This work opens new possibilities for cross-pollination between matting and segmentation techniques in computer vision.
- Abstract(参考訳): Dichotomous Image segmentation (DIS) への最近のアプローチは、画像のマッチングとオブジェクトのセグメンテーションを根本的に異なるタスクとして扱う。
画像セグメンテーションの改善がますます難しくなり、画像マッチングとグレースケールセグメンテーション技術を組み合わせることで、アーキテクチャの革新に有望な新たな方向性を提供する。
これら2つのモデルタスクを整合させる可能性に触発されて,信頼性ガイド・マッティング(CGM)と呼ばれる新しいアーキテクチャアプローチを提案する。
私たちは、BEN(Back background Erase Network)と呼ばれる最初のCGMモデルを作成しました。
BENは、初期セグメンテーションのためのBENベースと、信頼性向上のためのBENリファイナの2つのコンポーネントで構成されている。
提案手法は,DIS5K検証データセットの最先端手法よりも大幅に改善され,マッチングに基づく改良によりセグメンテーション品質が大幅に向上することを示す。
この研究は、コンピュータビジョンにおけるマットとセグメンテーションの相互補間の新しい可能性を開く。
関連論文リスト
- Image Segmentation in Foundation Model Era: A Survey [95.60054312319939]
イメージセグメンテーションにおける現在の研究は、異なる特徴、課題、解決策の詳細な分析を欠いている。
本調査は、FM駆動画像セグメンテーションを中心とした最先端の研究を徹底的にレビューすることで、このギャップを埋めようとしている。
現在の研究成果の広さを包括する,300以上のセグメンテーションアプローチの概要を概観する。
論文 参考訳(メタデータ) (2024-08-23T10:07:59Z) - Explore In-Context Segmentation via Latent Diffusion Models [132.26274147026854]
潜在拡散モデル(LDM)は、文脈内セグメンテーションに有効な最小限のモデルである。
画像とビデオの両方のデータセットを含む、新しい、公正なコンテキスト内セグメンテーションベンチマークを構築します。
論文 参考訳(メタデータ) (2024-03-14T17:52:31Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Improving Pixel-based MIM by Reducing Wasted Modeling Capability [77.99468514275185]
浅い層から低レベルの特徴を明示的に利用して画素再構成を支援する手法を提案する。
私たちの知る限りでは、等方的アーキテクチャのためのマルチレベル特徴融合を体系的に研究するのは、私たちは初めてです。
提案手法は, 微調整では1.2%, 線形探索では2.8%, セマンティックセグメンテーションでは2.6%など, 大幅な性能向上をもたらす。
論文 参考訳(メタデータ) (2023-08-01T03:44:56Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
深層学習法 (DL) が提案され, 画像分割に広く利用されている。
DLメソッドは通常、トレーニングデータとして大量の手動セグメントデータを必要とし、解釈性に乏しい。
本稿では,MSモデルにおける手作り正則項をデータ適応型一般化可学習正則項に置き換える。
論文 参考訳(メタデータ) (2023-06-25T02:34:34Z) - CM-MaskSD: Cross-Modality Masked Self-Distillation for Referring Image
Segmentation [29.885991324519463]
本稿では,CM-MaskSD という新しいクロスモーダルマスク型自己蒸留フレームワークを提案する。
提案手法は,CLIPモデルから画像テキストセマンティックアライメントの伝達知識を継承し,きめ細かいパッチワード特徴アライメントを実現する。
我々のフレームワークはパラメータフリーに近い方法でモデル性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-05-19T07:17:27Z) - Revisiting Image Reconstruction for Semi-supervised Semantic
Segmentation [16.27277238968567]
画像再構成を補助課題として利用し、半教師付きセマンティックセグメンテーションフレームワークに組み込むという考え方を再考する。
驚くことに、このような半教師付き学習の古いアイデアは、最先端のセマンティックセグメンテーションアルゴリズムと競合する結果をもたらす。
論文 参考訳(メタデータ) (2023-03-17T06:31:06Z) - CoMFormer: Continual Learning in Semantic and Panoptic Segmentation [45.66711231393775]
セグメンテーションと汎視的セグメンテーションの両方で操作できる最初の連続学習モデルを提案する。
提案手法はトランスフォーマーアーキテクチャの特性を利用して,時間とともに新しいクラスを学習する。
私たちのCoMFormerは、古いクラスを忘れるだけでなく、より効果的に新しいクラスを学ぶことで、既存のすべてのベースラインを上回ります。
論文 参考訳(メタデータ) (2022-11-25T10:15:06Z) - Progressively Dual Prior Guided Few-shot Semantic Segmentation [57.37506990980975]
Few-shotのセマンティックセマンティックセマンティクスタスクは、いくつかのアノテーション付きサポートサンプルを使用して、クエリイメージのセマンティクスを実行することを目的としている。
本稿では,先進的に2重にガイドされた数発のセマンティックセマンティックセグメンテーションネットワークを提案する。
論文 参考訳(メタデータ) (2022-11-20T16:19:47Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
本研究では,オブジェクトとシーンの微細な高画質画像分割のための新しい手法を提案する。
形態素画像処理技術による拡張と浸食に着想を得て,画素レベルのセグメンテーション問題をスクイーズ対象境界として扱う。
提案手法は,COCO,Cityscapesのインスタンス・セグメンテーション・セグメンテーション・セグメンテーションにおいて大きく向上し,同一条件下での精度・速度ともに従来のPointRendよりも優れていた。
論文 参考訳(メタデータ) (2021-05-25T04:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。