論文の概要: Towards a scalable AI-driven framework for data-independent Cyber Threat Intelligence Information Extraction
- arxiv url: http://arxiv.org/abs/2501.06239v1
- Date: Wed, 08 Jan 2025 12:35:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 17:24:55.393204
- Title: Towards a scalable AI-driven framework for data-independent Cyber Threat Intelligence Information Extraction
- Title(参考訳): データに依存しないサイバー脅威情報抽出のためのスケーラブルなAI駆動フレームワークを目指して
- Authors: Olga Sorokoletova, Emanuele Antonioni, Giordano Colò,
- Abstract要約: 本稿では、効率的なCTI情報抽出のために設計されたスケーラブルなAIベースのフレームワークである0-CTIを紹介する。
提案システムは、CTIレポートの完全なテキストシーケンスを処理し、名前付きエンティティとその関係のサイバーオントロジーを抽出する。
私たちの貢献は、教師付き学習とゼロショット学習の両方をサポートするCTI情報抽出のための最初のモジュラーフレームワークである0-CTIの開発です。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Cyber Threat Intelligence (CTI) is critical for mitigating threats to organizations, governments, and institutions, yet the necessary data are often dispersed across diverse formats. AI-driven solutions for CTI Information Extraction (IE) typically depend on high-quality, annotated data, which are not always available. This paper introduces 0-CTI, a scalable AI-based framework designed for efficient CTI Information Extraction. Leveraging advanced Natural Language Processing (NLP) techniques, particularly Transformer-based architectures, the proposed system processes complete text sequences of CTI reports to extract a cyber ontology of named entities and their relationships. Our contribution is the development of 0-CTI, the first modular framework for CTI Information Extraction that supports both supervised and zero-shot learning. Unlike existing state-of-the-art models that rely heavily on annotated datasets, our system enables fully dataless operation through zero-shot methods for both Entity and Relation Extraction, making it adaptable to various data availability scenarios. Additionally, our supervised Entity Extractor surpasses current state-of-the-art performance in cyber Entity Extraction, highlighting the dual strength of the framework in both low-resource and data-rich environments. By aligning the system's outputs with the Structured Threat Information Expression (STIX) format, a standard for information exchange in the cybersecurity domain, 0-CTI standardizes extracted knowledge, enhancing communication and collaboration in cybersecurity operations.
- Abstract(参考訳): サイバー脅威インテリジェンス(CTI)は、組織、政府、機関に対する脅威を軽減するために重要であるが、必要なデータは様々なフォーマットに分散することが多い。
CTI情報抽出(IE)のためのAI駆動のソリューションは、通常は高品質な注釈付きデータに依存している。
本稿では、効率的なCTI情報抽出のために設計されたスケーラブルなAIベースのフレームワークである0-CTIを紹介する。
先進的な自然言語処理(NLP)技術、特にトランスフォーマーベースのアーキテクチャを活用し、提案システムはCTIレポートの完全なテキストシーケンスを処理し、名前付きエンティティとその関係のサイバーオントロジーを抽出する。
私たちの貢献は、教師付き学習とゼロショット学習の両方をサポートするCTI情報抽出のための最初のモジュラーフレームワークである0-CTIの開発です。
アノテーション付きデータセットに強く依存する既存の最先端モデルとは異なり、本システムはエンティティとリレーショナル抽出の両方のゼロショットメソッドによる完全なデータレス操作を可能にし、さまざまなデータ可用性シナリオに適応できるようにする。
さらに、教師付きエンティティエクストラクタは、サイバーエンティティ抽出における現在の最先端のパフォーマンスを超え、低リソース環境とデータリッチ環境の両方において、フレームワークの二重強みを強調します。
システム出力を、サイバーセキュリティ領域の情報交換の標準であるStructured Threat Information Expression (STIX)フォーマットと整合させることで、0-CTIは抽出した知識を標準化し、サイバーセキュリティ操作におけるコミュニケーションとコラボレーションを強化する。
関連論文リスト
- CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することにより、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
GenAIはDTの構築と更新を推進し、予測精度を改善し、多様なスマート製造に備える。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Actionable Cyber Threat Intelligence using Knowledge Graphs and Large Language Models [0.8192907805418583]
Microsoft、Trend Micro、CrowdStrikeはCTI抽出を容易にするために生成AIを使用している。
本稿では,Large Language Models(LLMs)とKGs(KGs)の進歩を利用して,実行可能なCTIの抽出を自動化するという課題に対処する。
本手法は,情報抽出と構造化を最適化するために,プロンプトエンジニアリング,ガイダンスフレームワーク,微調整などの手法を評価する。
実験により,本手法が関連する情報抽出に有効であることを示すとともに,指導と微調整により,迅速な工学よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-06-30T13:02:03Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - AGIR: Automating Cyber Threat Intelligence Reporting with Natural
Language Generation [15.43868945929965]
我々は,CTIレポートの変換ツールであるAGIR(Automatic Generation of Intelligence Reports)を紹介する。
AGIRの主な目的は、包括的インテリジェンスレポートを生成するための労働集約的なタスクを自動化することで、セキュリティアナリストを強化することである。
我々はAGIRのレポート生成能力を定量的かつ質的に評価する。
論文 参考訳(メタデータ) (2023-10-04T08:25:37Z) - Time for aCTIon: Automated Analysis of Cyber Threat Intelligence in the
Wild [2.4669630540735215]
サイバー脅威インテリジェンス(CTI)は、リスクの評価と組織のセキュリティ向上に重要な役割を果たしている。
既存の構造化CTI抽出ツールには性能制限がある。
我々はこれらのギャップを埋め、新しい大きなオープンベンチマークデータセットと構造化されたCTI情報抽出ツールであるaCTIonを提供する。
論文 参考訳(メタデータ) (2023-07-14T13:43:16Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Recognizing and Extracting Cybersecurtity-relevant Entities from Text [1.7499351967216343]
サイバー脅威インテリジェンス(Cyber Threat Intelligence、CTI)は、脅威ベクトル、脆弱性、攻撃を記述した情報である。
CTIはしばしば、サイバーセキュリティ知識グラフ(CKG)のようなAIベースのサイバー防衛システムのトレーニングデータとして使用される。
論文 参考訳(メタデータ) (2022-08-02T18:44:06Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。