論文の概要: CAMs as Shapley Value-based Explainers
- arxiv url: http://arxiv.org/abs/2501.06261v1
- Date: Thu, 09 Jan 2025 13:14:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:22:36.010936
- Title: CAMs as Shapley Value-based Explainers
- Title(参考訳): 共有価値に基づく説明書としてのCAM
- Authors: Huaiguang Cai,
- Abstract要約: CAM(Class Activation Mapping)法はニューラルネットワークの決定を可視化するために広く用いられている。
本稿では,CRG (Content Reserved Game-theoretic) Explainerを紹介する。
このフレームワーク内では勾配とヘッセン行列を利用する新しい手法であるShapleyCAMを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Class Activation Mapping (CAM) methods are widely used to visualize neural network decisions, yet their underlying mechanisms remain incompletely understood. To enhance the understanding of CAM methods and improve their explainability, we introduce the Content Reserved Game-theoretic (CRG) Explainer. This theoretical framework clarifies the theoretical foundations of GradCAM and HiResCAM by modeling the neural network prediction process as a cooperative game. Within this framework, we develop ShapleyCAM, a new method that leverages gradients and the Hessian matrix to provide more precise and theoretically grounded visual explanations. Due to the computational infeasibility of exact Shapley value calculation, ShapleyCAM employs a second-order Taylor expansion of the cooperative game's utility function to derive a closed-form expression. Additionally, we propose the Residual Softmax Target-Class (ReST) utility function to address the limitations of pre-softmax and post-softmax scores. Extensive experiments across 12 popular networks on the ImageNet validation set demonstrate the effectiveness of ShapleyCAM and its variants. Our findings not only advance CAM explainability but also bridge the gap between heuristic-driven CAM methods and compute-intensive Shapley value-based methods. The code is available at \url{https://github.com/caihuaiguang/pytorch-shapley-cam}.
- Abstract(参考訳): クラスアクティベーションマッピング(CAM)法はニューラルネットワークの決定を可視化するために広く用いられているが、その基盤となるメカニズムはいまだに完全に理解されていない。
本稿では,CAM手法の理解を深め,その説明可能性を向上させるために,CRG(Content Reserved Game-theoretic) Explainerを提案する。
この理論的枠組みは、ニューラルネットワーク予測プロセスを協調ゲームとしてモデル化することにより、GradCAMとHiResCAMの理論基盤を明らかにする。
このフレームワーク内では、勾配とヘッセン行列を利用してより正確で理論的に基礎付けられた視覚的説明を提供するShapleyCAMを開発する。
ShapleyCAMは、正確なShapley値計算の計算不可能性のため、クローズドフォーム式を導出するために、協調ゲームのユーティリティ関数の2階テイラー展開を使用する。
また,Residual Softmax Target-Class (ReST)ユーティリティ関数を提案する。
ImageNetバリデーションセット上の12の人気のあるネットワークにわたる大規模な実験は、ShapleyCAMとその変種の有効性を実証している。
本研究は, CAM説明可能性の向上だけでなく, ヒューリスティック駆動型CAM法と計算集約型Shapley値ベース手法とのギャップを埋めるものである。
コードは \url{https://github.com/caihuaiguang/pytorch-shapley-cam} で公開されている。
関連論文リスト
- Shapley Pruning for Neural Network Compression [63.60286036508473]
この研究はShapley値近似を示し、ニューラルネットワーク圧縮の費用対効果の観点から比較分析を行う。
提案した規範的ランキングとその近似は、最先端のネットワーク圧縮を得る実用的な結果を示す。
論文 参考訳(メタデータ) (2024-07-19T11:42:54Z) - DecomCAM: Advancing Beyond Saliency Maps through Decomposition and Integration [25.299607743268993]
クラスアクティベーションマップ(CAM)手法は、モデルの意思決定基準を明らかにする領域を強調するが、明確なサリエンシマップと詳細な解釈性は欠如している。
チャネル活性化マップから共有パターンを抽出する新しい分解分解分解法であるDecomCAMを提案する。
実験の結果,DecomCAMは精度を向上するだけでなく,解釈可能性と計算効率のバランスを最適化できることがわかった。
論文 参考訳(メタデータ) (2024-05-29T08:40:11Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
概念ボトルネックモデル(CBM)を用いた新しいアーキテクチャと説明可能な分類法を提案する。
CBMには、さらなる概念のセットが必要である。
CLIPをベースとしたボトルネックモデルにおいて,スパース隠れ層を用いた精度の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-04-04T09:43:43Z) - BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
そこで我々はBroadCAMと呼ばれる結果に依存しないCAMアプローチを提案する。
VOC2012でBroadCAM、WSSSでBCSS-WSSS、WSOLでOpenImages30kを評価することで、BroadCAMは優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-09-07T06:45:43Z) - Empowering CAM-Based Methods with Capability to Generate Fine-Grained
and High-Faithfulness Explanations [1.757194730633422]
本稿では,CAM法を拡張したFG-CAMを提案する。
提案手法は, CAM法の特徴を変化させることなく, CAM法の欠点を解消するだけでなく, LRPとその変種よりも忠実である詳細な説明も生成する。
論文 参考訳(メタデータ) (2023-03-16T09:29:05Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
クラスアクティベーションマッピングに基づくShap-CAMと呼ばれる新しい視覚的説明法を開発した。
我々は,Shap-CAMが意思決定プロセスの解釈において,より良い視覚的性能と公平性を実現することを実証した。
論文 参考訳(メタデータ) (2022-08-07T00:59:23Z) - Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation [88.55040177178442]
クラスアクティベーションマップ(CAM)は、セマンティックセグメンテーションのための疑似マスクを生成する最も標準的なステップである。
しかし、不満足な擬似マスクのくちばしは、CAMで広く使われているバイナリクロスエントロピー損失(BCE)である。
ソフトマックスクロスエントロピー損失(SCE)を用いて収束CAMをBCEで再活性化する。
PASCAL VOC と MSCOCO の評価は、ReCAM が高品質なマスクを生成するだけでなく、オーバーヘッドの少ない任意の CAM 版でプラグイン・アンド・プレイをサポートすることを示している。
論文 参考訳(メタデータ) (2022-03-02T09:14:58Z) - F-CAM: Full Resolution CAM via Guided Parametric Upscaling [20.609010268320013]
クラスアクティベーションマッピング(CAM)メソッドは、最近、弱い教師付きオブジェクトローカライゼーション(WSOL)タスクに多くの注目を集めている。
CAMメソッドは通常、ResNet50のような既製のCNNバックボーンに統合される。
完全分解能CAMを高精度に構築できるCAMのパラメトリックアップスケーリング法を提案する。
論文 参考訳(メタデータ) (2021-09-15T04:45:20Z) - Use HiResCAM instead of Grad-CAM for faithful explanations of
convolutional neural networks [89.56292219019163]
説明法は意味のある概念を学習し、素早い相関を悪用しないモデルの開発を容易にする。
一般的なニューラルネットワーク説明法であるGrad-CAMの、未認識の制限について説明する。
本稿では,モデルが各予測に使用する場所のみをハイライトするクラス固有の説明手法であるHiResCAMを提案する。
論文 参考訳(メタデータ) (2020-11-17T19:26:14Z) - Axiom-based Grad-CAM: Towards Accurate Visualization and Explanation of
CNNs [29.731732363623713]
クラスアクティベーションマッピング(CAM)手法は,CNNの決定領域と画像領域の関連性を明らかにするために提案されている。
本稿では,CAM手法の可視化パラダイムに2つの公理(保存と感性)を導入する。
これらの公理をできるだけ満たすために、専用公理系Grad-CAM (XGrad-CAM) が提案されている。
論文 参考訳(メタデータ) (2020-08-05T18:42:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。