論文の概要: HPAC-IDS: A Hierarchical Packet Attention Convolution for Intrusion Detection System
- arxiv url: http://arxiv.org/abs/2501.06264v1
- Date: Thu, 09 Jan 2025 15:24:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:20:16.338191
- Title: HPAC-IDS: A Hierarchical Packet Attention Convolution for Intrusion Detection System
- Title(参考訳): HPAC-IDS:侵入検知システムのための階層型パケット注意畳み込み
- Authors: Anass Grini, Btissam El Khamlichi, Abdellatif El Afia, Amal El Fallah-Seghrouchni,
- Abstract要約: 本研究は,階層構造と自己認識機構を活用した,悪意あるネットワークトラフィックに対する堅牢な検出システムを提案する。
提案システムは,所定の生ネットワークパケットをHPAC-IDSに供給される固定サイズのセグメントに分割するパケットセグメンタを含む。
CIC-IDS 2017データセットで実施された実験によると、システムは高い精度と低い偽陽性率を示す。
- 参考スコア(独自算出の注目度): 0.8437187555622164
- License:
- Abstract: This research introduces a robust detection system against malicious network traffic, leveraging hierarchical structures and self-attention mechanisms. The proposed system includes a Packet Segmenter that divides a given raw network packet into fixed-size segments that are fed to the HPAC-IDS. The experiments performed on CIC-IDS2017 dataset show that the system exhibits high accuracy and low false positive rates while demonstrating resilience against diverse adversarial methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and Wasserstein GAN (WGAN). The model's ability to withstand adversarial perturbations is attributed to the fusion of hierarchical attention mechanisms and convolutional neural networks, resulting in a 0% to 10% adversarial attack severity under tested adversarial attacks with different segment sizes, surpassing the state-of-the-art model in detection performance and adversarial attack robustness.
- Abstract(参考訳): 本研究は,階層構造と自己認識機構を活用した,悪意あるネットワークトラフィックに対する堅牢な検出システムを提案する。
提案システムは,所定の生ネットワークパケットをHPAC-IDSに供給される固定サイズのセグメントに分割するパケットセグメンタを含む。
CIC-IDS2017データセットで実施された実験では、システムは高い精度と低い偽陽性率を示しながら、FGSM(Fast Gradient Sign Method)、PGD(Projected Gradient Descent)、Warsserstein GAN(WGAN)といった様々な敵の手法に対してレジリエンスを示す。
モデルの逆方向摂動に耐える能力は階層的注意機構と畳み込みニューラルネットワークの融合によるものであり、その結果、異なるセグメントサイズでテストされた逆方向攻撃の下では、0%から10%の逆方向攻撃重大性が、検出性能と逆方向攻撃堅牢性において最先端モデルを上回っている。
関連論文リスト
- Pulling Back the Curtain: Unsupervised Adversarial Detection via Contrastive Auxiliary Networks [0.0]
本稿では,補助的特徴表現内での敵対行動を明らかにするために,補助的コントラストネットワーク(U-CAN)による教師なし敵検出を提案する。
本手法は、既存の非教師付き対向検出手法を超越し、4つの異なる攻撃方法に対して優れたF1スコアを達成している。
論文 参考訳(メタデータ) (2025-02-13T09:40:26Z) - Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
論文 参考訳(メタデータ) (2024-09-01T08:53:21Z) - Novelty Detection in Network Traffic: Using Survival Analysis for
Feature Identification [1.933681537640272]
侵入検知システムは、多くの組織のサイバー防衛とレジリエンス戦略の重要な構成要素である。
これらのシステムの欠点の1つは、悪意のあるネットワークイベントを検出するために既知の攻撃シグネチャに依存することである。
本稿では,生存分析技術に基づく新規性検出に影響を及ぼすネットワークトラフィックの特徴を識別するための,従来からあるアプローチを提案する。
論文 参考訳(メタデータ) (2023-01-16T01:40:29Z) - Masked Spatial-Spectral Autoencoders Are Excellent Hyperspectral
Defenders [15.839321488352535]
本研究では,HSI解析システムのロバスト性を高めるマスク付き空間スペクトルオートエンコーダ(MSSA)を提案する。
限定ラベル付きサンプルの防衛伝達性の向上と課題に対処するため,MSSAはプリテキストタスクとしてスペクトル再構成を採用している。
3つのベンチマークの総合的な実験は、最先端のハイパースペクトル分類法と比較してMSSAの有効性を検証する。
論文 参考訳(メタデータ) (2022-07-16T01:33:13Z) - Defending From Physically-Realizable Adversarial Attacks Through
Internal Over-Activation Analysis [61.68061613161187]
Z-Maskは、敵の攻撃に対する畳み込みネットワークの堅牢性を改善するための堅牢で効果的な戦略である。
提示されたディフェンスは、入力画像中の対向対象に対応する画素を検出し、隠蔽するために、内部ネットワーク機能で実行される特定のZスコア解析に依存する。
追加の実験では、Z-Maskは防衛対応攻撃に対して堅牢であることが示された。
論文 参考訳(メタデータ) (2022-03-14T17:41:46Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Deep Neural Networks (DNN) を中継するセキュリティに敏感なアプリケーションは、Adversarial Examples (AE) を生成するために作られた小さな摂動に弱い。
本稿では,マルチタスク学習環境における選択的予測,モデルレイヤの出力処理,知識伝達概念を用いた教師なし検出機構を提案する。
実験の結果,提案手法は,ホワイトボックスシナリオにおけるテスト攻撃に対する最先端手法と同等の結果を得られ,ブラックボックスとグレーボックスシナリオの精度が向上した。
論文 参考訳(メタデータ) (2021-03-09T11:06:15Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。