論文の概要: Uncertainty Estimation for Path Loss and Radio Metric Models
- arxiv url: http://arxiv.org/abs/2501.06308v1
- Date: Fri, 10 Jan 2025 19:11:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:28:41.017875
- Title: Uncertainty Estimation for Path Loss and Radio Metric Models
- Title(参考訳): 経路損失と電波量モデルの不確かさ推定
- Authors: Alexis Bose, Jonathan Ethier, Ryan G. Dempsey, Yifeng Qiu,
- Abstract要約: Conformal Predictive Systems (CPS) は、機械学習(ML)ベースの無線メトリックモデルスイートにおける不確実性を正確に推定する。
CPSモデルはバンクーバーやモントリオールなど他の都市に効果的に一般化され、高いカバレッジと信頼性を維持している。
これらの結果は、無線ネットワークモデリングにおけるCPSによるスケーラブルで信頼性の高い不確実性推定の有効性を浮き彫りにした。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This research leverages Conformal Prediction (CP) in the form of Conformal Predictive Systems (CPS) to accurately estimate uncertainty in a suite of machine learning (ML)-based radio metric models [1] as well as in a 2-D map-based ML path loss model [2]. Utilizing diverse difficulty estimators, we construct 95% confidence prediction intervals (PIs) that are statistically robust. Our experiments demonstrate that CPS models, trained on Toronto datasets, generalize effectively to other cities such as Vancouver and Montreal, maintaining high coverage and reliability. Furthermore, the employed difficulty estimators identify challenging samples, leading to measurable reductions in RMSE as dataset difficulty decreases. These findings highlight the effectiveness of scalable and reliable uncertainty estimation through CPS in wireless network modeling, offering important potential insights for network planning, operations, and spectrum management.
- Abstract(参考訳): 本研究は,CPS (Conformal Predictive Systems) の形式でコンフォーマル予測(CP)を利用して,機械学習(ML) ベースの無線メトリックモデル [1] および2次元マップベースのMLパス損失モデル [2] における不確実性を正確に推定する。
様々な難易度推定器を用いて、統計的に堅牢な95%信頼予測間隔(PI)を構築した。
我々の実験は、トロントのデータセットに基づいてトレーニングされたCPSモデルがバンクーバーやモントリオールといった他の都市に効果的に一般化し、高いカバレッジと信頼性を維持していることを示した。
さらに, データセットの難易度が低下するにつれて, RMSEの精度が低下する。
これらの結果は、無線ネットワークモデリングにおけるCPSによるスケーラブルで信頼性の高い不確実性推定の有効性を強調し、ネットワーク計画、運用、スペクトル管理において重要な洞察を提供する。
関連論文リスト
- Worst-Case Convergence Time of ML Algorithms via Extreme Value Theory [8.540426791244533]
本稿では、極端な値の統計を利用して、機械学習アルゴリズムの最悪の収束時間を予測する。
タイミングはMLシステムの重要な非機能特性であり、最悪の収束時間を提供することは、MLとそのサービスの可用性を保証するために不可欠である。
論文 参考訳(メタデータ) (2024-04-10T17:05:12Z) - Deep Learning-Based Cyber-Attack Detection Model for Smart Grids [6.642400003243118]
監視制御とデータ取得(SCADA)により、受信した負荷データに対するデータ完全性サイバー攻撃(DIA)を防止するために、人工知能に基づく新しいサイバー攻撃検出モデルを開発した。
提案モデルでは、まず回帰モデルを用いて負荷データを予測し、処理後、教師なし学習法を用いて処理データをクラスタ化する。
提案したEE-BiLSTM法は,他の2つの手法と比較して,より堅牢かつ高精度に動作可能である。
論文 参考訳(メタデータ) (2023-12-14T10:54:04Z) - Dynamic Model Agnostic Reliability Evaluation of Machine-Learning
Methods Integrated in Instrumentation & Control Systems [1.8978726202765634]
データ駆動型ニューラルネットワークベースの機械学習アルゴリズムの信頼性は十分に評価されていない。
National Institute for Standards and Technologyの最近のレポートでは、MLにおける信頼性は採用にとって重要な障壁となっている。
トレーニングデータセットにアウト・オブ・ディストリビューション検出を組み込むことにより、ML予測の相対的信頼性を評価するためのリアルタイムモデル非依存手法を実証する。
論文 参考訳(メタデータ) (2023-08-08T18:25:42Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - A comparison of Monte Carlo dropout and bootstrap aggregation on the
performance and uncertainty estimation in radiation therapy dose prediction
with deep learning neural networks [0.46180371154032895]
本稿では,モンテカルロ投棄法(MCDO)とブートストラップアグリゲーション(バッグング)をディープラーニングモデルに応用し,放射線治療用線量予測の不確かさを推定する手法を提案する。
パフォーマンス面では、バギングは調査対象のほとんどの指標において統計的に顕著な損失値と誤差を減少させる。
論文 参考訳(メタデータ) (2020-11-01T00:24:43Z) - Know Where To Drop Your Weights: Towards Faster Uncertainty Estimation [7.605814048051737]
低レイテンシアプリケーションで使用されるモデルの不確かさを推定することは、不確実性推定技術が計算的に要求される性質のためである。
本稿では、ニューラルネットワークのサブセットを用いてMCDCの不確実性をモデル化するSelect-DCを提案する。
我々は,不確実性をモデル化するためにGFLOPSをモンテカルロDropConnectと比較して大幅に削減し,性能の限界トレードオフを示した。
論文 参考訳(メタデータ) (2020-10-27T02:56:27Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。